Turbine endwall aerodynamics and heat transfer

T. W. Simon, J. D. Piggush

Research output: Contribution to journalArticlepeer-review

126 Scopus citations

Abstract

This review addresses recent literature on turbine passage aerodynamics and endwall heat transfer; articles that describe the endwall flow and cooling problems are summarized, recent activity on improving endwall aerothermal design is discussed, improved cooling schemes are proposed, and methods for managing secondary flows to allow more effective cooling are suggested. Much attention is given to aerodynamic losses associated with secondary flows developed near the endwalls. The endwall region flowfield is influenced by the stagnation zones established as the endwall approach flow boundary layer meets the airfoil leading edges, by the curvature of the passages, by the steps and gaps on the endwall surface ahead of and within the passage, by the leakage and coolant flows introduced through the endwall surface ahead of and within the passage, by the tip leakage flows between the blades and shroud in the rotor endwall region, and by many more effects. Recent combustor redesigns have flattened the turbine inlet temperature profile and have raised the turbine inlet temperatures. This, coupled with a continued need to improve engine durability and availability, has spurred strong interest in thermal control of the turbine endwall regions. Thus, much of the literature presented herein is focused on endwall cooling and, in particular, the effects of near-endwall secondary flows on endwall cooling.

Original languageEnglish (US)
Pages (from-to)301-312
Number of pages12
JournalJournal of Propulsion and Power
Volume22
Issue number2
DOIs
StatePublished - 2006

Fingerprint

Dive into the research topics of 'Turbine endwall aerodynamics and heat transfer'. Together they form a unique fingerprint.

Cite this