Abstract
Background: Neuroblastoma is an aggressive pediatric malignancy with significant chemotherapeutic resistance. We assessed triptolide as a potential therapy. Methods: SH-SY5Y and IMR-32 neuroblastoma cell lines were treated with triptolide. Viability, intracellular calcium, caspase activation, protein, and mRNA levels were measured. Autophagy was evaluated with confocal microscopy. Nuclear factor-kappa B (NF-κB) activation was measured using a dual luciferase assay. Results: Triptolide treatment resulted in death in both cell lines within 72 hours, with sustained increases in intracellular calcium. IMR-32 cells underwent cell death by apoptosis. Conversely, light chain 3II (LC3II) protein levels were elevated in SH-SY5Y cells, which is consistent with autophagy. Confocal microscopy confirmed increased LC3 puncta in SH-SY5Y cells compared with control cells. Heat shock pathway protein and mRNA levels decreased with treatment. NF-κB assays demonstrated inhibition of tumor necrosis factor (TNF)-α-induced activity with triptolide. Conclusions: Triptolide treatment induces cell death in neuroblastoma by different mechanisms with multiple pathways targeted. Triptolide may serve a potential chemotherapeutic role in advanced cases of neuroblastoma.
Original language | English (US) |
---|---|
Pages (from-to) | 387-396 |
Number of pages | 10 |
Journal | American journal of surgery |
Volume | 205 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2013 |
Keywords
- Apoptosis
- Autophagy
- Heat shock protein
- NF-κB
- Neuroblastoma
- Triptolide