Triply compensated RF pulses in high-resolution NMR spectroscopy

Research output: Contribution to journalArticlepeer-review


In spite of the advancements in NMR pulse sequence design, high-fidelity control of nuclear spins using RF pulses is still problematic. With the advent of ultra-high field spectrometers, the effects of these imperfections are even more significant. Triply compensated RF pulses enable high-fidelity control of spin operations at bandwidths larger than conventional experiments. This family of pulses is time-optimized and performs universal π and π/2 operations with simultaneous compensation for spatial RF inhomogeneity and heteronuclear J coupling evolution. Here, we describe how to design triply compensated pulses using genetic algorithm (GA) optimization and illustrate a few examples, showing their impact on the sensitivity of double-and triple-resonance NMR experiments.

Original languageEnglish (US)
Pages (from-to)353-362
Number of pages10
Issue number4
StatePublished - 2019

Bibliographical note

Funding Information:
This work is supported by the National Institute of Health (GM64742, HL144130, and GM 100310).

Publisher Copyright:
© 2019 John Wiley & Sons, Ltd.


  • Broadband pulses
  • HSQC
  • Optimal control theory
  • RF inhomogeneity


Dive into the research topics of 'Triply compensated RF pulses in high-resolution NMR spectroscopy'. Together they form a unique fingerprint.

Cite this