TY - JOUR
T1 - Triplet exciton confinement in green organic light-emitting diodes containing luminescent charge-transfer Cu(I) complexes
AU - Zhang, Qisheng
AU - Komino, Takeshi
AU - Huang, Shuping
AU - Matsunami, Shigeyuki
AU - Goushi, Kenichi
AU - Adachi, Chihaya
PY - 2012/6/6
Y1 - 2012/6/6
N2 - The temperature dependence of luminescence from [Cu(dnbp)(DPEPhos)]BF 4 (dnbp = 2,9-di-n-butylphenanthroline, DPEPhos = bis[2-(diphenylphosphino)phenyl]ether) in a poly(methyl methacrylate) (PMMA) film indicates the presence of long-life green emission arising from two thermally equilibrated charge transfer (CT) excited states and one non-equilibrated triplet ligand center ( 3LC) excited state. At room temperature, the lower triplet CT state is found to be the predominantly populated excited state, and the zero-zero energy of this state is found to be 2.72 eV from the onset of its emission at 80 K. The tunable emission maximum of [Cu(dnbp)(DPEPhos)]BF 4 in various hosts with different triplet energies is explained in terms of the multiple triplet energy levels of this complex in amorphous films. Using the high triplet energy charge transport material as a host and an exciton-blocking layer (EBL), a [Cu(dnbp)(DPEPhos)] BF 4 based organic light-emitting diode (OLED) achieves a high external quantum efficiency (EQE) of 15.0%, which is comparable to values for similar devices based on Ir(ppy) 3 and FIrpic. The photoluminescence (PL) and electroluminescence (EL) performance of green emissive [Cu(μI)dppb] 2 (dppb = 1,2-bis[diphenylphosphino]benzene) in organic semiconductor films confirmed its 3CT state with a zero-zero energy of 2.76 eV as the predominant population excited state.
AB - The temperature dependence of luminescence from [Cu(dnbp)(DPEPhos)]BF 4 (dnbp = 2,9-di-n-butylphenanthroline, DPEPhos = bis[2-(diphenylphosphino)phenyl]ether) in a poly(methyl methacrylate) (PMMA) film indicates the presence of long-life green emission arising from two thermally equilibrated charge transfer (CT) excited states and one non-equilibrated triplet ligand center ( 3LC) excited state. At room temperature, the lower triplet CT state is found to be the predominantly populated excited state, and the zero-zero energy of this state is found to be 2.72 eV from the onset of its emission at 80 K. The tunable emission maximum of [Cu(dnbp)(DPEPhos)]BF 4 in various hosts with different triplet energies is explained in terms of the multiple triplet energy levels of this complex in amorphous films. Using the high triplet energy charge transport material as a host and an exciton-blocking layer (EBL), a [Cu(dnbp)(DPEPhos)] BF 4 based organic light-emitting diode (OLED) achieves a high external quantum efficiency (EQE) of 15.0%, which is comparable to values for similar devices based on Ir(ppy) 3 and FIrpic. The photoluminescence (PL) and electroluminescence (EL) performance of green emissive [Cu(μI)dppb] 2 (dppb = 1,2-bis[diphenylphosphino]benzene) in organic semiconductor films confirmed its 3CT state with a zero-zero energy of 2.76 eV as the predominant population excited state.
KW - Cu(I) complexes
KW - charge transfer excited states
KW - organic light emitting diodes
KW - triplet energy levels
UR - http://www.scopus.com/inward/record.url?scp=84861797033&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861797033&partnerID=8YFLogxK
U2 - 10.1002/adfm.201101907
DO - 10.1002/adfm.201101907
M3 - Article
AN - SCOPUS:84861797033
SN - 1616-301X
VL - 22
SP - 2327
EP - 2336
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 11
ER -