Trap state photoluminescence of nanocrystalline and bulk TiO2: Implications for carrier transport

Christopher C. Rich, Fritz J. Knorr, Jeanne L. McHale

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations


The visible photoluminescence of nanocrystalline TiO2 is examined in the presence of surface binding agents and as a function of vacuum annealing in order to probe the molecular nature of surface defects. The photoluminesence (PL) of bulk crystals of anatase TiO2 from (101) and (001) planes is also reported in order to test the hypothesis that electron and hole traps are spatially isolated on different crystal planes. We find that a number of hole scavengers are capable of quenching the PL associated with trapped electrons, while the ability of oxygen to quench PL through electron scavenging varies with the nature of the sample. We conclude that hole scavengers exert their influence on the PL through reaction with valence band holes rather than with spatially isolated trapped holes. Scavenging of electrons by O2, on the other hand, depends on adsorption at oxygen vacancies and varies with TiO2 sample.

Original languageEnglish (US)
Title of host publicationDefects in Inorganic Photovoltaic Materials
Number of pages6
StatePublished - Dec 1 2010
Event2010 MRS Spring Meeting - San Francisco, CA, United States
Duration: Apr 5 2010Apr 9 2010

Publication series

NameMaterials Research Society Symposium Proceedings
ISSN (Print)0272-9172


Other2010 MRS Spring Meeting
Country/TerritoryUnited States
CitySan Francisco, CA


Dive into the research topics of 'Trap state photoluminescence of nanocrystalline and bulk TiO2: Implications for carrier transport'. Together they form a unique fingerprint.

Cite this