Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change

Shannon L. Pelini, Jason D.K. Dzurisin, Kirsten M. Prior, Caroline M. Williams, Travis D. Marsico, Brent J. Sinclair, Jessica J. Hellmann

Research output: Contribution to journalArticlepeer-review

95 Scopus citations

Abstract

There is a pressing need to predict how species will change their geographic ranges under climate change. Projections typically assume that temperature is a primary fitness determinant and that populations near the poleward (and upward) range boundary are preadapted to warming. Thus, poleward, peripheral populations will increase with warming, and these increases facilitate poleward range expansions. We tested the assumption that poleward, peripheral populations are enhanced by warming using 2 butterflies (Erynnis propertius and Papilio zelicaon) that co-occur and have contrasting degrees of host specialization and interpopulation genetic differentiation. We performed a reciprocal translocation experiment between central and poleward, peripheral populations in the field and simulated a translocation experiment that included alternate host plants. We found that the performance of both central and peripheral populations of E. propertius were enhanced during the summer months by temperatures characteristic of the range center but that local adaptation of peripheral populations to winter conditions near the range edge could counteract that enhancement. Further, poleward range expansion in this species is prevented by a lack of host plants. In P. zelicaon, the fitness of central and peripheral populations decreased under extreme summer temperatures that occurred in the field at the range center. Performance in this species also was affected by an interaction of temperature and host plant such that host species strongly mediated the fitness of peripheral individuals under differing simulated temperatures. Altogether we have evidence that facilitation of poleward range shifts through enhancement of peripheral populations is unlikely in either study species.

Original languageEnglish (US)
Pages (from-to)11160-11165
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume106
Issue number27
DOIs
StatePublished - Jul 7 2009
Externally publishedYes

Keywords

  • Lepidoptera
  • Range center
  • Range expansion
  • Range periphery

Fingerprint

Dive into the research topics of 'Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change'. Together they form a unique fingerprint.

Cite this