TY - JOUR
T1 - Translational control of cell fate
T2 - Availability of phosphorylation sites on translational repressor 4E-BP1 governs its proapoptotic potency
AU - Li, Shunan
AU - Sonenberg, Nahum
AU - Gingras, Anne Claude
AU - Peterson, Mark
AU - Avdulov, Svetlana V
AU - Polunovsky, Vitaly A.
AU - Bitterman, Peter B
PY - 2002
Y1 - 2002
N2 - Translational control has been recently added to well-recognized genomic, transcriptional, and posttranslational mechanisms regulating apoptosis. We previously found that overexpressed eukaryotic initiation factor 4E (eIF4E) rescues cells from apoptosis, while ectopic expression of wild-type eIF4E-binding protein 1 (4E-BP1), the most abundant member of the 4E-BP family of eIF4E repressor proteins, activates apoptosis - but only in transformed cells. To test the possibility that nontransformed cells require less cap-dependent translation to suppress apoptosis than do their transformed counterparts, we intensified the level of translational repression in nontransformed fibroblasts. Here, we show that inhibition of 4E-BP1 phosphorylation by rapamycin triggers apoptosis in cells ectopically expressing wild-type 4E-BP1 and that expression of 4E-BPI phosphorylation site mutants potently activates apoptosis in a phosphorylation site-specific manner. In general, proapoptotic potency paralleled repression of cap-dependent translation. However, this relationship was not a simple monotone. As repression of cap-dependent translation intensified, apoptosis increased to a maximum value. Further repression resulted in less apoptosis - a state associated with activation of translation through internal ribosomal entry sites. These findings show: that phosphorylation events govern the proapoptotic potency of 4E-BP1, that 4E-BP1 is proapoptotic in normal as well as transformed fibroblasts, and that malignant transformation is associated with a higher requirement for cap-dependent translation to inhibit apoptosis. Our results suggest that 4E-BP1-mediated control of apoptosis occurs through qualitative rather than quantitative changes in protein synthesis, mediated by a dynamic interplay between cap-dependent and cap-independent processes.
AB - Translational control has been recently added to well-recognized genomic, transcriptional, and posttranslational mechanisms regulating apoptosis. We previously found that overexpressed eukaryotic initiation factor 4E (eIF4E) rescues cells from apoptosis, while ectopic expression of wild-type eIF4E-binding protein 1 (4E-BP1), the most abundant member of the 4E-BP family of eIF4E repressor proteins, activates apoptosis - but only in transformed cells. To test the possibility that nontransformed cells require less cap-dependent translation to suppress apoptosis than do their transformed counterparts, we intensified the level of translational repression in nontransformed fibroblasts. Here, we show that inhibition of 4E-BP1 phosphorylation by rapamycin triggers apoptosis in cells ectopically expressing wild-type 4E-BP1 and that expression of 4E-BPI phosphorylation site mutants potently activates apoptosis in a phosphorylation site-specific manner. In general, proapoptotic potency paralleled repression of cap-dependent translation. However, this relationship was not a simple monotone. As repression of cap-dependent translation intensified, apoptosis increased to a maximum value. Further repression resulted in less apoptosis - a state associated with activation of translation through internal ribosomal entry sites. These findings show: that phosphorylation events govern the proapoptotic potency of 4E-BP1, that 4E-BP1 is proapoptotic in normal as well as transformed fibroblasts, and that malignant transformation is associated with a higher requirement for cap-dependent translation to inhibit apoptosis. Our results suggest that 4E-BP1-mediated control of apoptosis occurs through qualitative rather than quantitative changes in protein synthesis, mediated by a dynamic interplay between cap-dependent and cap-independent processes.
UR - http://www.scopus.com/inward/record.url?scp=0036195727&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036195727&partnerID=8YFLogxK
U2 - 10.1128/MCB.22.8.2853-2861.2002
DO - 10.1128/MCB.22.8.2853-2861.2002
M3 - Article
C2 - 11909977
AN - SCOPUS:0036195727
SN - 0270-7306
VL - 22
SP - 2853
EP - 2861
JO - Molecular and cellular biology
JF - Molecular and cellular biology
IS - 8
ER -