Transient Creep in Subduction Zones by Long-Range Dislocation Interactions in Olivine

David Wallis, Mike Sep, Lars N. Hansen

Research output: Contribution to journalArticlepeer-review

Abstract

Large earthquakes transfer stress from the shallow lithosphere to the underlying viscoelastic lower crust and upper mantle, inducing transient creep during the postseismic interval. Recent experiments on olivine have provided a new rheological model for this transient creep based on the accumulation and release of back stresses among dislocations. Here, we test whether natural rocks preserve dislocation-induced stress heterogeneity consistent with the back-stress hypothesis by mapping olivine from the palaeosubduction interface of the Oman-UAE ophiolite with high-angular resolution electron backscatter diffraction. The olivine preserves heterogeneous residual stresses that vary in magnitude by several hundred megapascals over length scales of a few micrometers. Large stresses are commonly spatially associated with elevated densities of geometrically necessary dislocations within subgrain interiors. These spatial relationships, along with characteristic probability distributions of the stresses, confirm that the stress heterogeneity is generated by the dislocations and records their long-range elastic interactions. Images of dislocations decorated by oxidation display bands of high and low dislocation density, suggesting that dislocation interactions contributed to the organization of the substructure. These results support the applicability of the back-stress model of transient creep to deformation in the mantle portion of plate-boundary shear zones. The model predicts that rapid stress changes, such as those imposed by large earthquakes, can induce order-of-magnitude changes in viscosity that depend nonlinearly on the stress change, consistent with inferences of mantle rheology from geodetic observations.

Original languageEnglish (US)
Article numbere2021JB022618
JournalJournal of Geophysical Research: Solid Earth
Volume127
Issue number1
DOIs
StatePublished - Jan 2022

Bibliographical note

Funding Information:
We thank Tyler Ambrose for providing the conventional EBSD data and for discussions on the geological context. We thank Mike Searle for conversations on the geology of the ophiolite. This work was supported by the Natural Environment Research Council [grant number NE/M000966/1]; a UK Research and Innovation Future Leaders Fellowship [grant number MR/V021788/1]; the Netherlands Organisation for Scientific Research, User Support Programme Space Research, grant ALWGO.2018.038; and startup funds from Utrecht University.

Publisher Copyright:
© 2022. The Authors.

Keywords

  • Oman-UAE ophiolite
  • geometrically necessary dislocation
  • high-angular resolution electron backscatter diffraction
  • olivine
  • stress heterogeneity
  • transient creep

Fingerprint

Dive into the research topics of 'Transient Creep in Subduction Zones by Long-Range Dislocation Interactions in Olivine'. Together they form a unique fingerprint.

Cite this