TY - GEN
T1 - Transient control of a hydraulic free piston engine
AU - Li, Ke
AU - Zhang, Chen
AU - Sun, Zongxuan
PY - 2013
Y1 - 2013
N2 - The free piston engine (FPE) is a type of internal combustion engine (ICE) with no crankshaft, so that its piston motion is no longer constrained by mechanical linkages. The FPE has a high potential in terms of energy saving given its simple structure, high modularity and high efficiency. One of the technical barriers that prevents the wide spread of the FPE technology, is the lack of precise piston motion control. Previously, a robust repetitive controller is designed and implemented to form a virtual crankshaft that would provide a precise and stable engine operation. The experimental data of engine motoring tests with virtual crankshaft demonstrates the effectiveness of the controller. However, the presence of a transient period after a single combustion event prevents the engine from continuous firing. This paper presents a modified control scheme, which utilizes a reference and control signal shifting technique to modify the tracking error and the control signal to reduce the transient period.
AB - The free piston engine (FPE) is a type of internal combustion engine (ICE) with no crankshaft, so that its piston motion is no longer constrained by mechanical linkages. The FPE has a high potential in terms of energy saving given its simple structure, high modularity and high efficiency. One of the technical barriers that prevents the wide spread of the FPE technology, is the lack of precise piston motion control. Previously, a robust repetitive controller is designed and implemented to form a virtual crankshaft that would provide a precise and stable engine operation. The experimental data of engine motoring tests with virtual crankshaft demonstrates the effectiveness of the controller. However, the presence of a transient period after a single combustion event prevents the engine from continuous firing. This paper presents a modified control scheme, which utilizes a reference and control signal shifting technique to modify the tracking error and the control signal to reduce the transient period.
UR - http://www.scopus.com/inward/record.url?scp=84902511197&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902511197&partnerID=8YFLogxK
U2 - 10.1115/DSCC2013-3991
DO - 10.1115/DSCC2013-3991
M3 - Conference contribution
AN - SCOPUS:84902511197
SN - 9780791856123
T3 - ASME 2013 Dynamic Systems and Control Conference, DSCC 2013
BT - Aerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications;
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2013 Dynamic Systems and Control Conference, DSCC 2013
Y2 - 21 October 2013 through 23 October 2013
ER -