TY - JOUR
T1 - Transferable potentials for phase equilibria. 7. Primary, secondary, and tertiary amines, nitroalkanes and nitrobenzene, nitriles, amides, pyridine, and pyrimidine
AU - Wick, Collin D.
AU - Stubbs, John M.
AU - Rai, Neeraj
AU - Siepmann, J. Ilja
PY - 2005/10/13
Y1 - 2005/10/13
N2 - The transferable potentials for phase equilibria (TraPPE) force fields are extended to amine, nitro, nitrile, and amide functionalities and to pyridine and pyrimidine. In many cases, the same parameters for a functional group are used for both united-atom and explicit-hydrogen representations of alkyl tails. Following the TraPPE philosophy, the nonbonded interaction parameters were fitted to the vapor-liquid coexistence curves for selected one-component systems. Coupled-decoupled configurational-bias Monte Carlo simulations in the Gibbs ensemble were applied to neat (methyl-, dimethyl-, trimethyl-, ethyl-, diethyl-, or triethyl-)amine, nitromethane, nitroethane, nitrobenzene, acetonitrile, propionitrile, acetamide, propanamide, butanamide, pyridine, and pyrimidine. Excellent agreement with experimental results was found, with the mean unsigned errors being less than 1% for both the critical temperature and the normal boiling temperature. Similarly, the liquid densities at low reduced temperatures are reproduced to within 1%, and the deviation for the critical densities is about 4%. Additional simulations were performed for the binary mixtures of methylamine + n-hexane, diethyl ether + acetonitrile, 1-propanol + acetonitrile, and nitroethane + ethanol. With the exception of the methylamine/n-hexane mixture for which the separation factor is substantially overestimated, agreement with experiment for the other three mixtures is very satisfactory.
AB - The transferable potentials for phase equilibria (TraPPE) force fields are extended to amine, nitro, nitrile, and amide functionalities and to pyridine and pyrimidine. In many cases, the same parameters for a functional group are used for both united-atom and explicit-hydrogen representations of alkyl tails. Following the TraPPE philosophy, the nonbonded interaction parameters were fitted to the vapor-liquid coexistence curves for selected one-component systems. Coupled-decoupled configurational-bias Monte Carlo simulations in the Gibbs ensemble were applied to neat (methyl-, dimethyl-, trimethyl-, ethyl-, diethyl-, or triethyl-)amine, nitromethane, nitroethane, nitrobenzene, acetonitrile, propionitrile, acetamide, propanamide, butanamide, pyridine, and pyrimidine. Excellent agreement with experimental results was found, with the mean unsigned errors being less than 1% for both the critical temperature and the normal boiling temperature. Similarly, the liquid densities at low reduced temperatures are reproduced to within 1%, and the deviation for the critical densities is about 4%. Additional simulations were performed for the binary mixtures of methylamine + n-hexane, diethyl ether + acetonitrile, 1-propanol + acetonitrile, and nitroethane + ethanol. With the exception of the methylamine/n-hexane mixture for which the separation factor is substantially overestimated, agreement with experiment for the other three mixtures is very satisfactory.
UR - http://www.scopus.com/inward/record.url?scp=27144459049&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=27144459049&partnerID=8YFLogxK
U2 - 10.1021/jp0504827
DO - 10.1021/jp0504827
M3 - Article
C2 - 16853443
AN - SCOPUS:27144459049
VL - 109
SP - 18974
EP - 18982
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
SN - 1520-6106
IS - 40
ER -