Transfer of optical spectral weight in magnetically ordered superconductors

Rafael M. Fernandes, Jörg Schmalian

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

We show that, in antiferromagnetic superconductors, the optical spectral weight transferred to low frequencies below the superconducting transition temperature originates from energies that can be much larger than twice the superconducting gap Δ. This contrasts to nonmagnetic superconductors, where the optical spectrum is suppressed only for frequencies below 2Δ. In particular, we demonstrate that the superfluid condensate of the magnetically ordered superconductor is not only due to states of the magnetically reconstructed Fermi surface but is enhanced by transfer of spectral weight from the mid-infrared peak generated by the spin-density wave gap. We apply our results to the iron arsenide superconductors, addressing the decrease in the zero-temperature superfluid density in the doping regime where magnetism coexists with unconventional superconductivity.

Original languageEnglish (US)
Article number014520
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume82
Issue number1
DOIs
StatePublished - Jul 16 2010

Fingerprint

Dive into the research topics of 'Transfer of optical spectral weight in magnetically ordered superconductors'. Together they form a unique fingerprint.

Cite this