@inproceedings{91db03137133471cae5c45cd4c602168,
title = "Trajectory interpolation for parametrized maneuvering and flexible motion planning of autonomous vehicles",
abstract = "This paper describes a method of generating continuously parametrized maneuver classes based on a finite number of user-provided examples motions. A trajectory interpolation algorithm performs a smooth transformation of vehicle maneuvers across a continuous range of boundary conditions while enforcing nonlinear system equations of motion as well as non-linear equality and inequality constraints. The scheme is particularly useful for describing motions that deviate widely from the range of linearized dynamics and where satisfactory examples may be found from off-line nonlinear programming solutions or human pilot motion capture. The interpolation algorithm is computationally efficient, making it a suitable alternative for near real-time maneuver synthesis, particularly when used in concert with a vehicle motion planner. Experimental application to a three degree-of-freedom rotorcraft test bed demonstrates the essential features of system and trajectory modeling, maneuver example selection, maneuver class synthesis, and integration into a hybrid system path planner.",
author = "Chris Dever and Bernard Mettler and Eric Feron and Jovan Popovi{\'c} and Marc McConley",
year = "2004",
doi = "10.2514/6.2004-5143",
language = "English (US)",
isbn = "1563476703",
series = "Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference",
publisher = "American Institute of Aeronautics and Astronautics Inc.",
pages = "2072--2099",
booktitle = "Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference",
note = "Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference ; Conference date: 16-08-2004 Through 19-08-2004",
}