Towards Spatially-Lucid AI Classification in Non-Euclidean Space: An Application for MxIF Oncology Data

Majid Farhadloo, Arun Sharma, Jayant Gupta, Alexey Leontovich, Svetomir N. Markovic, Shashi Shekhar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Given multi-category point sets from different place-types, our goal is to develop a spatially-lucid classifier that can distinguish between two classes based on the arrangements of their points. This problem is important for many applications, such as oncology, for analyzing immune-tumor relationships and designing new immunotherapies. It is challenging due to spatial variability and interpretability needs. Previously proposed techniques require dense training data or have limited ability to handle significant spatial variability within a single place-type. Most importantly, these deep neural network (DNN) approaches are not designed to work in non-Euclidean space, particularly point sets. Existing non-Euclidean DNN methods are limited to one-size-fits-all approaches. We explore a spatial ensemble framework that explicitly uses different training strategies, including weighted-distance learning rate and spatial domain adaptation, on various place-types for spatially-lucid classification. Experimental results on real-world datasets (e.g., MxIF oncology data) show that the proposed framework provides higher prediction accuracy than baseline methods.

Original languageEnglish (US)
Title of host publicationProceedings of the 2024 SIAM International Conference on Data Mining, SDM 2024
EditorsShashi Shekhar, Vagelis Papalexakis, Jing Gao, Zhe Jiang, Matteo Riondato
PublisherSociety for Industrial and Applied Mathematics Publications
Pages616-624
Number of pages9
ISBN (Electronic)9781611978032
StatePublished - 2024
Event2024 SIAM International Conference on Data Mining, SDM 2024 - Houston, United States
Duration: Apr 18 2024Apr 20 2024

Publication series

NameProceedings of the 2024 SIAM International Conference on Data Mining, SDM 2024

Conference

Conference2024 SIAM International Conference on Data Mining, SDM 2024
Country/TerritoryUnited States
CityHouston
Period4/18/244/20/24

Bibliographical note

Publisher Copyright:
Copyright © 2024 by SIAM.

Keywords

  • interpretability
  • non-euclidean space
  • spatial variability
  • spatially-lucid
  • tumor oncology

Fingerprint

Dive into the research topics of 'Towards Spatially-Lucid AI Classification in Non-Euclidean Space: An Application for MxIF Oncology Data'. Together they form a unique fingerprint.

Cite this