Abstract
Graph Neural Networks (GNNs) have made significant advances on several fundamental inference tasks. As a result, there is a surge of interest in using these models for making potentially important decisions in high-regret applications. However, despite GNNs' impressive performance, it has been observed that carefully crafted perturbations on graph structures (or nodes attributes) lead them to make wrong predictions. Presence of these adversarial examples raises serious security concerns. Most of the existing robust GNN design/training methods are only applicable to white-box settings where model parameters are known and gradient based methods can be used by performing convex relaxation of the discrete graph domain. More importantly, these methods are not efficient and scalable which make them infeasible in time sensitive tasks and massive graph datasets. To overcome these limitations, we propose a general framework which leverages the greedy search algorithms and zeroth-order methods to obtain robust GNNs in a generic and an efficient manner. On several applications, we show that the proposed techniques are significantly less computationally expensive and, in some cases, more robust than the state-of-the-art methods making them suitable to large-scale problems which were out of the reach of traditional robust training methods.
Original language | English (US) |
---|---|
Title of host publication | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 8479-8483 |
Number of pages | 5 |
ISBN (Electronic) | 9781509066315 |
DOIs | |
State | Published - May 2020 |
Externally published | Yes |
Event | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain Duration: May 4 2020 → May 8 2020 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2020-May |
ISSN (Print) | 1520-6149 |
Conference
Conference | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 |
---|---|
Country/Territory | Spain |
City | Barcelona |
Period | 5/4/20 → 5/8/20 |
Bibliographical note
Publisher Copyright:© 2020 IEEE
Keywords
- Adversarial training
- Graph neural networks
- Greedy algorithm
- Large-scale learning
- Robustness