Toward a glucose biosensor based on surface-enhanced Raman scattering

Karen E. Shafer-Peltier, Christy L. Haynes, Matthew R. Glucksberg, Richard P. Van Duyne

Research output: Contribution to journalArticlepeer-review

570 Scopus citations

Abstract

This work presents the first step toward a glucose biosensor using surface-enhanced Raman spectroscopy (SERS). Historically, glucose has been extremely difficult to detect by SERS because it has a small normal Raman cross section and adsorbs weakly or not at all to bare silver surfaces. In this paper, we report the first systematic study of the direct detection of glucose using SERS. Glucose is partitioned into an alkanethiol monolayer adsorbed on a silver film over nanosphere (AgFON) surface and thereby, it is preconcentrated within the 0-4 nm thick zone of electromagnetic field enhancement. The experiments presented herein utilize leave-one-out partial least-squares (LOO-PLS) analysis to demonstrate quantitative glucose detection both over a large (0-250 mM) and clinically relevant (0-25 mM) concentration range. The root-mean-squared error of prediction (RMSEP) of 1.8 mM (33.1 mg/dL) in the clinical study is near that desired for medical applications (1 mM, 18 mg/dL). Future studies will advance toward true in vivo, real time, minimally invasive sensing.

Original languageEnglish (US)
Pages (from-to)588-593
Number of pages6
JournalJournal of the American Chemical Society
Volume125
Issue number2
DOIs
StatePublished - Jan 15 2003

Fingerprint Dive into the research topics of 'Toward a glucose biosensor based on surface-enhanced Raman scattering'. Together they form a unique fingerprint.

Cite this