TY - JOUR
T1 - Topological transitions in evaporating thin films
AU - Klein, Avraham
AU - Agam, Oded
PY - 2012
Y1 - 2012
N2 - A thin water film evaporating from a cleaved mica substrate undergoes a first-order phase transition between two values of film thickness. During evaporation, the interface between the two phases develops a fingering instability similar to that observed in the Saffman-Taylor problem. The dynamics of the droplet interface is dictated by an infinite number of conserved quantities: all harmonic moments decay exponentially at the same rate. A typical scenario is the nucleation of a dry patch within the droplet domain. We construct solutions of this problem and analyze the topological transition occurring when the boundary of the dry patch meets the outer boundary. We show a duality between Laplacian growth and evaporation, and utilize it to explain the behavior near the transition. We construct a family of problems for which evaporation and Laplacian growth are limiting cases and show that a necessary condition for a smooth topological transition, in this family, is that all boundaries share the same pressure.
AB - A thin water film evaporating from a cleaved mica substrate undergoes a first-order phase transition between two values of film thickness. During evaporation, the interface between the two phases develops a fingering instability similar to that observed in the Saffman-Taylor problem. The dynamics of the droplet interface is dictated by an infinite number of conserved quantities: all harmonic moments decay exponentially at the same rate. A typical scenario is the nucleation of a dry patch within the droplet domain. We construct solutions of this problem and analyze the topological transition occurring when the boundary of the dry patch meets the outer boundary. We show a duality between Laplacian growth and evaporation, and utilize it to explain the behavior near the transition. We construct a family of problems for which evaporation and Laplacian growth are limiting cases and show that a necessary condition for a smooth topological transition, in this family, is that all boundaries share the same pressure.
UR - http://www.scopus.com/inward/record.url?scp=84865206822&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84865206822&partnerID=8YFLogxK
U2 - 10.1088/1751-8113/45/35/355003
DO - 10.1088/1751-8113/45/35/355003
M3 - Article
AN - SCOPUS:84865206822
SN - 1751-8113
VL - 45
JO - Journal of Physics A: Mathematical and Theoretical
JF - Journal of Physics A: Mathematical and Theoretical
IS - 35
M1 - 355003
ER -