Tissue-engineered transcatheter vein valve

Zeeshan H Syedain, Anders C. Jenson, Puja S. Patel, Cole Feagler, Logan Bahmer, Rumi Faizer, Robert T Tranquillo

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Chronic venous insufficiency affects over 2 million patients in the US alone, with severe cases involving thousands of patients with chronic leg ulcers and potential amputation. Current treatment options are limited, with surgical repair of vein valves being the most effective but challenging solution. A transcatheter vein valve made from a biologically-engineered matrix possessing the ability to regenerate has the potential to provide both valve function and long-term hemocompatibility and durability because the matrix becomes endothelialized and populated with host tissue cells. We have developed a novel tissue-engineered transcatheter vein valve (TEVV) on a Nitinol stent and demonstrated function and durability in vitro. Tissue was grown from fibroblasts in fibrin gel so as to embed the stent, with a tubular extension of the engineered tissue from one end of the stent that was stitched along opposite sides and everted into the stent to form a bileaflet valve. Following decellularization, to create an “off-the-shelf” TEVV comprised of the resulting collagenous matrix, it was tested in a pulse duplicator to evaluate hydrodynamic properties for a range of flow rates. The TEVV was shown to have forward pressure drops in the range of 2–4 mmHg, low closing volume, and nil regurgitation. Further hydrodynamic tests were performed after crimping and then again after 1 million cycle durability testing, showing no degradation of valve performance or any visual damage to the matrix. The TEVV held over 600 mmHg backpressure after the durability testing, ensuring the valve would withstand pressure spikes well outside of the normal in vivo range. Catheter-based delivery into the ovine iliac vein demonstrated TEVV closing 2 weeks p.o. and endothelialization without thrombosis 8 weeks p.o.

Original languageEnglish (US)
Article number119229
StatePublished - Sep 2019

Bibliographical note

Funding Information:
The authors acknowledge technical assistance from Sandy Johnson, Naomi Ferguson, Thanh Le, Meghana Iyer, and Jake Benkofske. IACUC protocol and animal study management support by Advanced Preclinical Imaging Center (Jennifer Rees and Rachel Stark). 3D printing support from the UMN Medical Devices Center and funding from Regenerative Medicine Minnesota Award No. 101617 TR 005 to R.T.T. are also gratefully acknowledged.

Fingerprint Dive into the research topics of 'Tissue-engineered transcatheter vein valve'. Together they form a unique fingerprint.

Cite this