TY - JOUR
T1 - Time-resolved luminescence detection of spleen tyrosine kinase activity through terbium sensitization
AU - Lipchik, Andrew M.
AU - Parker, Laurie L.
PY - 2013/3/5
Y1 - 2013/3/5
N2 - Disruption of regulatory protein phosphorylation can lead to disease and is particularly prevalent in cancers. Inhibitors that target deregulated kinases are therefore a major focus of chemotherapeutic development. Achieving sensitivity and specificity in high-throughput compatible kinase assays is key to successful inhibitor development. Here, we describe the application of time-resolved luminescence detection to the direct sensing of spleen tyrosine kinase (Syk) activity and inhibition using a novel peptide substrate. Chelation and luminescence sensitization of Tb3+ allowed the direct detection of peptide phosphorylation without any antibodies or other labeling reagents. Characterizing the Tb3+ coordination properties of the phosphorylated vs unphosphorylated form of the peptide revealed that an inner-sphere water was displaced upon phosphorylation, which likely was responsible for both enhancing the luminescence intensity and also extending the lifetime, which enabled gating of the luminescence signal to improve the dynamic range. Furthermore, a shift in the optimal absorbance maximum for excitation was observed, from 275 nm (for the unphosphorylated tyrosine peptide) to 266 nm (for the phosphorylated tyrosine peptide). Accordingly, time-resolved measurements with excitation at 266 nm via a monochromator enabled a 16-fold improvement in base signal-to-noise for distinguishing phosphopeptide from unphosphorylated peptide. This led to a high degree of sensitivity and quantitative reproducibility, demonstrating the amenability of this method to both research laboratory and high-throughput applications.
AB - Disruption of regulatory protein phosphorylation can lead to disease and is particularly prevalent in cancers. Inhibitors that target deregulated kinases are therefore a major focus of chemotherapeutic development. Achieving sensitivity and specificity in high-throughput compatible kinase assays is key to successful inhibitor development. Here, we describe the application of time-resolved luminescence detection to the direct sensing of spleen tyrosine kinase (Syk) activity and inhibition using a novel peptide substrate. Chelation and luminescence sensitization of Tb3+ allowed the direct detection of peptide phosphorylation without any antibodies or other labeling reagents. Characterizing the Tb3+ coordination properties of the phosphorylated vs unphosphorylated form of the peptide revealed that an inner-sphere water was displaced upon phosphorylation, which likely was responsible for both enhancing the luminescence intensity and also extending the lifetime, which enabled gating of the luminescence signal to improve the dynamic range. Furthermore, a shift in the optimal absorbance maximum for excitation was observed, from 275 nm (for the unphosphorylated tyrosine peptide) to 266 nm (for the phosphorylated tyrosine peptide). Accordingly, time-resolved measurements with excitation at 266 nm via a monochromator enabled a 16-fold improvement in base signal-to-noise for distinguishing phosphopeptide from unphosphorylated peptide. This led to a high degree of sensitivity and quantitative reproducibility, demonstrating the amenability of this method to both research laboratory and high-throughput applications.
UR - http://www.scopus.com/inward/record.url?scp=84874619768&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874619768&partnerID=8YFLogxK
U2 - 10.1021/ac3023422
DO - 10.1021/ac3023422
M3 - Article
C2 - 23414415
AN - SCOPUS:84874619768
SN - 0003-2700
VL - 85
SP - 2582
EP - 2588
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 5
ER -