Time-resolved FRET reveals the structural mechanism of SERCA-PLB regulation

Xiaoqiong Dong, David D. Thomas

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to characterize the interaction between phospholamban (PLB) and the sarcoplasmic reticulum (SR) Ca-ATPase (SERCA) under conditions that relieve SERCA inhibition. Unphosphorylated PLB inhibits SERCA in cardiac SR, but inhibition is relieved by either micromolar Ca2+ or PLB phosphorylation. In both cases, it has been proposed that inhibition is relieved by dissociation of the complex. To test this hypothesis, we attached fluorophores to the cytoplasmic domains of SERCA and PLB, and reconstituted them functionally in lipid bilayers. TR-FRET, which permitted simultaneous measurement of SERCA-PLB binding and structure, was measured as a function of PLB phosphorylation and [Ca2+]. In all cases, two structural states of the SERCA-PLB complex were resolved, probably corresponding to the previously described T and R structural states of the PLB cytoplasmic domain. Phosphorylation of PLB at S16 completely relieved inhibition, partially dissociated the SERCA-PLB complex, and shifted the T/R equilibrium within the bound complex toward the R state. Since the PLB concentration in cardiac SR is at least 10 times that in our FRET measurements, we calculate that most of SERCA contains bound phosphorylated PLB in cardiac SR, even after complete phosphorylation. 4 μM Ca2+ completely relieved inhibition but did not induce a detectable change in SERCA-PLB binding or cytoplasmic domain structure, suggesting a mechanism involving structural changes in SERCA's transmembrane domain. We conclude that Ca2+ and PLB phosphorylation relieve SERCA-PLB inhibition by distinct mechanisms, but both are achieved primarily by structural changes within the SERCA-PLB complex, not by dissociation of that complex.

Original languageEnglish (US)
Pages (from-to)196-201
Number of pages6
JournalBiochemical and Biophysical Research Communications
Issue number2
StatePublished - Jun 27 2014

Bibliographical note

Funding Information:
We thank Razvan Cornea and Elizabeth Lockamy for helpful discussions, Zachary James for help with mutagenesis and PLB expression, Ji Li and Kurt C. Peterson for technical support. Work was supported by grants NIH GM27906 and NIH AR0507220 to D.D.T.


  • FRET
  • Phospholamban
  • Phosphorylation


Dive into the research topics of 'Time-resolved FRET reveals the structural mechanism of SERCA-PLB regulation'. Together they form a unique fingerprint.

Cite this