Thermoelectric MHD in dendritic solidification

A. Kao, G. Djambazov, K. Pericleous, Vaughan R Voller

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

The effects of a constant uniform magnetic field on dendritic solidification were investigated using an enthalpy based numerical model. The interaction between thermoelectric currents on a growing crystal and the magnetic field generates a Lorentz force that creates flow. The need for very high resolution at the liquid-solid boundary where the thermoelectric source originates plus the need to accommodate multiple grains for a realistic simulation, make this a very demanding computational problem. For practical simulations, a quasi 3-dimensional approximation is proposed which nevertheless retains essential elements of transport in the third dimension. A magnetic field normal to the plane of growth leads to general flow circulation around an equiaxed dendrite, with secondary recirculations between the arms. The heat/solute advection by the flow is shown to cause a change in the morphology of the dendrite; secondary growth is promoted preferentially on one side of the dendrite arm and the tip velocity of the primary arm is increased. The degree of approximation introduced is quantified by extending the model into 3-dimensions, where the full Navier-Stokes equation is solved, and compared against the 2-dimensional solution.

Original languageEnglish (US)
Pages (from-to)305-315
Number of pages11
JournalMagnetohydrodynamics
Issue number3
StatePublished - Dec 1 2009

Fingerprint Dive into the research topics of 'Thermoelectric MHD in dendritic solidification'. Together they form a unique fingerprint.

Cite this