Thermal rate constants of the N2+O→NO+N reaction using ab initio 3A″ and3A′ potential energy surfaces

Deepak Bose, Graham V. Candler

Research output: Contribution to journalArticlepeer-review

172 Scopus citations


Theoretical determinations of the thermal rate constants and product energy distributions of the N2+O→NO+N reaction, which plays a crucial role in hydrocarbon air combustion and high temperature air chemistry, are carried out using a quasiclassical trajectory method. An analytical fit of the lowest 3A′ potential energy surface of this reaction based on the CCI ab initio data is obtained. The trajectory study is done on this surface and an analytical 3A″ surface proposed by Gilibert et al. [J. Chem. Phys. 97, 5542 (1992)]. The thermal rate constants computed from 3000 to 20 000 K are in good agreement with the available experimental data. In addition, the dependence of the rate constant on the N2 internal state is studied. It is found that a low vibrational excitation can reduce the rate constant of this reaction by a factor of 3. Also, we investigate the effect of the N2 vibrational state on the product NO vibrational distribution, and it is found that at low N2 vibrational states, the NO vibrational distribution is nearly Boltzmann. However, at N2(ν>10), the product distribution is almost uniform at low energy levels.

Original languageEnglish (US)
Pages (from-to)2825-2833
Number of pages9
JournalJournal of Chemical Physics
Issue number8
StatePublished - Jan 1 1996


Dive into the research topics of 'Thermal rate constants of the N<sub>2</sub>+O→NO+N reaction using ab initio <sup>3</sup>A″ and<sup>3</sup>A′ potential energy surfaces'. Together they form a unique fingerprint.

Cite this