Thermal noise response based static non-contact atomic force microscopy

Anil Gannepalli, Abu Sebastian, Murti V. Salapaka, Jason P. Cleveland

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Micro-cantilever based devices have revolutionized imaging and they are the primary tools for investigation and control of matter at the nanoscale. In this paper a novel approach based on the thermal noise response of the cantilever is developed that makes non-contact AFM possible in static mode. This technique exploits the dependence of cantilever's resonant frequency on the tip-sample separation to maintain a small tip-sample separation by regulating the equivalent resonant frequency. The resonant frequency is estimated from cantilever's response to the thermal noise. The experiments performed in ambient room conditions have achieved tip-sample separations as small as 4 nm for time periods in excess of 20 min. Based on this control technique a new static non-contact mode operation of AFM has been demonstrated. This method has given rise to an extremely powerful non-contact imaging technique capable of detecting sub-angstorm features at a bandwidth of 200 Hz with a force sensitivity of a few pN.

Original languageEnglish (US)
Title of host publication2004 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2004
EditorsM. Laudon, B. Romanowicz
Pages159-162
Number of pages4
StatePublished - Nov 2 2004
Event2004 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2004 - Boston, MA, United States
Duration: Mar 7 2004Mar 11 2004

Publication series

Name2004 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2004
Volume3

Other

Other2004 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2004
Country/TerritoryUnited States
CityBoston, MA
Period3/7/043/11/04

Keywords

  • Cantilever resonance
  • Non-contact force microscopy
  • Static mode operation
  • Thermal noise response
  • Tip-sample separation control

Fingerprint

Dive into the research topics of 'Thermal noise response based static non-contact atomic force microscopy'. Together they form a unique fingerprint.

Cite this