TY - JOUR
T1 - Thermal elasticity of (Fex,Mg1-x)2SiO 4 olivine and wadsleyite
AU - Núñez-Valdez, M.
AU - Wu, Z.
AU - Yu, Y. G.
AU - Wentzcovitch, R. M.
PY - 2013/1/28
Y1 - 2013/1/28
N2 - Wepresentfirst-principles results for elastic moduli (bulk, K, and shear, G) and acoustic velocities (compressional, VP, shear, VS, and bulk Vφ) of olivine (α) and wadsleyite (β) (Fe x,Mg1-x)2SiO4, at high pressure (P) and temperature (T) with varying iron content (0 ≤ x ≤ 0.125). Pressure and temperature derivatives of these properties are analyzed. We show that adding 12.5% of Fe in forsterite softens VP and VS by ∼3-6%, the same effect as raising temperature by ∼1000K in dry olivine at 13.5GPa-the same is true in wadsleyite. This study suggests that Fe is effective in producing seismic velocity heterogeneity at upper mantle and transition zone conditions and should be another key ingredient, in addition to temperature and water content variations, in interpreting seismic heterogeneities in the transition zone. The effect of Fe on density, elastic, and velocity contrasts across the α→β transition is also addressed at relevant conditions. We show that simultaneous changes of composition, temperature, and pressure do not affect significantly the relative density contrasts. We also find that compressional and shear impedance contrasts result primarily from velocity discontinuities rather than density discontinuity.
AB - Wepresentfirst-principles results for elastic moduli (bulk, K, and shear, G) and acoustic velocities (compressional, VP, shear, VS, and bulk Vφ) of olivine (α) and wadsleyite (β) (Fe x,Mg1-x)2SiO4, at high pressure (P) and temperature (T) with varying iron content (0 ≤ x ≤ 0.125). Pressure and temperature derivatives of these properties are analyzed. We show that adding 12.5% of Fe in forsterite softens VP and VS by ∼3-6%, the same effect as raising temperature by ∼1000K in dry olivine at 13.5GPa-the same is true in wadsleyite. This study suggests that Fe is effective in producing seismic velocity heterogeneity at upper mantle and transition zone conditions and should be another key ingredient, in addition to temperature and water content variations, in interpreting seismic heterogeneities in the transition zone. The effect of Fe on density, elastic, and velocity contrasts across the α→β transition is also addressed at relevant conditions. We show that simultaneous changes of composition, temperature, and pressure do not affect significantly the relative density contrasts. We also find that compressional and shear impedance contrasts result primarily from velocity discontinuities rather than density discontinuity.
UR - http://www.scopus.com/inward/record.url?scp=84874858816&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874858816&partnerID=8YFLogxK
U2 - 10.1002/grl.50131
DO - 10.1002/grl.50131
M3 - Article
AN - SCOPUS:84874858816
SN - 0094-8276
VL - 40
SP - 290
EP - 294
JO - Geophysical Research Letters
JF - Geophysical Research Letters
IS - 2
ER -