The use of succinonitrile as an electrolyte additive for composite-fiber membranes in lithium-ion batteries

Jahaziel Villarreal, Roberto Orrostieta Chavez, Sujay A. Chopade, Timothy P. Lodge, Mataz Alcoutlabi

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

In the present work, the effect of temperature and additives on the ionic conductivity of mixed organic/ionic liquid electrolytes (MOILEs) was investigated by conducting galvanostatic charge/discharge and ionic conductivity experiments. The mixed electrolyte is based on the ionic liquid (IL) (EMI/TFSI/LiTFSI) and organic solvents EC/DMC (1:1 v/v). The effect of electrolyte type on the electrochemical performance of a LiCoO2 cathode and a SnO2 /C composite anode in lithium anode (or cathode) half-cells was also investigated. The results demonstrated that the addition of 5 wt.% succinonitrile (SN) resulted in enhanced ionic conductivity of a 60% EMI-TFSI 40% EC/DMC MOILE from ~14 mS·cm−1 to ~26 mS·cm−1 at room temperature. Additionally, at a temperature of 100 C, an increase in ionic conductivity from ~38 to ~69 mS·cm−1 was observed for the MOILE with 5 wt% SN. The improvement in the ionic conductivity is attributed to the high polarity of SN and its ability to dissolve various types of salts such as LiTFSI. The galvanostatic charge/discharge results showed that the LiCoO2 cathode with the MOILE (without SN) exhibited a 39% specific capacity loss at the 50th cycle while the LiCoO2 cathode in the MOILE with 5 wt.% SN showed a decrease in specific capacity of only 14%. The addition of 5 wt.% SN to the MOILE with a SnO2 /C composite-fiber anode resulted in improved cycling performance and rate capability of the SnO2 /C composite-membrane anode in lithium anode half-cells. Based on the results reported in this work, a new avenue and promising outcome for the future use of MOILEs with SN in lithium-ion batteries (LIBs) can be opened.

Original languageEnglish (US)
Article number45
JournalMembranes
Volume10
Issue number3
DOIs
StatePublished - Mar 2020

Bibliographical note

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Composite fibers
  • Electrolyte
  • Ionic liquids
  • Lithium ion batteries
  • Mixtures
  • Succinonitrile

MRSEC Support

  • Primary

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'The use of succinonitrile as an electrolyte additive for composite-fiber membranes in lithium-ion batteries'. Together they form a unique fingerprint.

Cite this