TY - JOUR
T1 - The Tec kinases Itk and Rlk regulate NKT cell maturation, cytokine production, and survival
AU - Felices, Martin
AU - Berg, Leslie J.
PY - 2008/3/1
Y1 - 2008/3/1
N2 - The Tec kinases Itk and Rlk are required for efficient positive selection of conventional CD4+ and CD8+ T cells in the thymus. In contrast, recent studies have shown that these Tec kinases are dispensable for the development of CD8+ T cells with characteristics of innate T cells. These findings raise questions about the potential role of Itk and Rlk in NKT cell development, because NKT cells represent a subset of innate T cells. To address this issue, we examined invariant NKT cells in Itk-/- and Itk/Rlk-/- mice. We find, as has been reported previously, that Itk-/- mice have reduced numbers of NKT cells with a predominantly immature phenotype. We further show that this defect is greatly exacerbated in the absence of both Itk and Rlk, leading to a 7-fold reduction in invariant NKT cell numbers in the thymus of Itk/Rlk-/- mice and a more severe block in NKT cell maturation. Splenic Itk-/- and Itk/Rlk-/- NKT cells are also functionally defective, because they produce little to no cytokine following in vivo activation. Tec kinase-deficient NKT cells also show enhanced cell death in the spleen. These defects correlate with greatly diminished expression of CD122, the IL-2R/IL-15R β-chain, and impaired expression of the T-box transcription factor, T-bet. These data indicate that the Tec kinases Itk and Rlk provide important signals for terminal maturation, efficient cytokine production, and peripheral survival of NKT cells.
AB - The Tec kinases Itk and Rlk are required for efficient positive selection of conventional CD4+ and CD8+ T cells in the thymus. In contrast, recent studies have shown that these Tec kinases are dispensable for the development of CD8+ T cells with characteristics of innate T cells. These findings raise questions about the potential role of Itk and Rlk in NKT cell development, because NKT cells represent a subset of innate T cells. To address this issue, we examined invariant NKT cells in Itk-/- and Itk/Rlk-/- mice. We find, as has been reported previously, that Itk-/- mice have reduced numbers of NKT cells with a predominantly immature phenotype. We further show that this defect is greatly exacerbated in the absence of both Itk and Rlk, leading to a 7-fold reduction in invariant NKT cell numbers in the thymus of Itk/Rlk-/- mice and a more severe block in NKT cell maturation. Splenic Itk-/- and Itk/Rlk-/- NKT cells are also functionally defective, because they produce little to no cytokine following in vivo activation. Tec kinase-deficient NKT cells also show enhanced cell death in the spleen. These defects correlate with greatly diminished expression of CD122, the IL-2R/IL-15R β-chain, and impaired expression of the T-box transcription factor, T-bet. These data indicate that the Tec kinases Itk and Rlk provide important signals for terminal maturation, efficient cytokine production, and peripheral survival of NKT cells.
UR - http://www.scopus.com/inward/record.url?scp=49149113472&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=49149113472&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.180.5.3007
DO - 10.4049/jimmunol.180.5.3007
M3 - Article
C2 - 18292523
AN - SCOPUS:49149113472
SN - 0022-1767
VL - 180
SP - 3007
EP - 3018
JO - Journal of Immunology
JF - Journal of Immunology
IS - 5
ER -