TY - JOUR
T1 - The tat pathway is prevalent in Listeria monocytogenes lineage II and is not required for infection and spread in host cells
AU - MacHado, Henrique
AU - Lourenço, António
AU - Carvalho, Filipe
AU - Cabanes, Didier
AU - Kallipolitis, Birgitte H.
AU - Brito, Luísa
PY - 2013/4
Y1 - 2013/4
N2 - Listeria monocytogenes, a foodborne pathogenic bacterium, remains a serious public health concern due to its frequent occurrence in food products coupled with a high mortality rate. Bacterial pathogenicity depends greatly on the ability to secrete virulence factors to or beyond the bacterial cell surface. The Tat pathway, one of the secretion systems present in L. monocytogenes, was until now only investigated in silico. In L. monocytogenes strain EGDe two genes constitute this pathway, tatC(lmo0361) and tatA(lmo0362). Here we show that tatC and tatA are cotranscribed in a bicistronic- and growth-phase-dependent manner, being downregulated in the stationary phase. An EGDe tatAC mutant strain (EGDe ΔtatAC) was constructed, confirming that the Tat pathway is not essential for L.monocytogenes survival or biofilm-forming ability. When compared to the wild-type EGDe, deletion of tatAC did not decrease the virulence potential of EGDe ΔtatAC in HT-29 human epithelial cell line and even increased (p < 0.05) the virulence potential for mice. Moreover, we show that tat genes are prevalent in L. monocytogenes strains belonging to genetic lineage II and are generally absent from lineage I, which is more associated with human cases, thus excluding the possibility of using the Tat system as a target for novel antimicrobial compounds targeting L.monocytogenes.
AB - Listeria monocytogenes, a foodborne pathogenic bacterium, remains a serious public health concern due to its frequent occurrence in food products coupled with a high mortality rate. Bacterial pathogenicity depends greatly on the ability to secrete virulence factors to or beyond the bacterial cell surface. The Tat pathway, one of the secretion systems present in L. monocytogenes, was until now only investigated in silico. In L. monocytogenes strain EGDe two genes constitute this pathway, tatC(lmo0361) and tatA(lmo0362). Here we show that tatC and tatA are cotranscribed in a bicistronic- and growth-phase-dependent manner, being downregulated in the stationary phase. An EGDe tatAC mutant strain (EGDe ΔtatAC) was constructed, confirming that the Tat pathway is not essential for L.monocytogenes survival or biofilm-forming ability. When compared to the wild-type EGDe, deletion of tatAC did not decrease the virulence potential of EGDe ΔtatAC in HT-29 human epithelial cell line and even increased (p < 0.05) the virulence potential for mice. Moreover, we show that tat genes are prevalent in L. monocytogenes strains belonging to genetic lineage II and are generally absent from lineage I, which is more associated with human cases, thus excluding the possibility of using the Tat system as a target for novel antimicrobial compounds targeting L.monocytogenes.
KW - Foodborne pathogen
KW - Listeria monocytogenes
KW - Tat pathway
KW - Virulence
UR - http://www.scopus.com/inward/record.url?scp=84876083299&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84876083299&partnerID=8YFLogxK
U2 - 10.1159/000348245
DO - 10.1159/000348245
M3 - Article
C2 - 23595063
AN - SCOPUS:84876083299
SN - 1464-1801
VL - 23
SP - 209
EP - 218
JO - Journal of Molecular Microbiology and Biotechnology
JF - Journal of Molecular Microbiology and Biotechnology
IS - 3
ER -