TY - JOUR

T1 - The structure of mackey functors

AU - Thevenaz, Jacques

AU - Webb, Peter

N1 - Copyright:
Copyright 2016 Elsevier B.V., All rights reserved.

PY - 1995/6

Y1 - 1995/6

N2 - Mackey functors are a framework having the common properties of many natural constructions for finite groups, such as group cohomology, representation rings, the Burnside ring, the topological K-theory of classifying spaces, the algebraic K-theory of group rings, the Witt rings of Galois extensions, etc. In this work we first show that the Mackey functors for a group may be identified with the modules for a certain algebra, called the Mackey algebra. The study of Mackey functors is thus the same thing as the study of the representation theory of this algebra. We develop the properties of Mackey functors in the spirit of representation theory, and it emerges that there are great similarities with the representation theory of finite groups. In previous work we had classified the simple Mackey functors and demonstrated semisimplicity in characteristic zero. Here we consider the projective Mackey functors (in arbitrary characteristic), describing many of their features. We show, for example, that the Cartan matrix of the Mackey algebra may be computed from a decomposition matrix in the same way as for group representations. We determine the vertices, sources and Green correspondents of the projective and simple Mackey functors, as well as providing a way to compute the Ext groups for the simple Mackey functors. We parametrize the blocks of Mackey functors and determine the groups for which the Mackey algebra has finite representation type. It turns out that these Mackey algebras are direct sums of simple algebras and Brauer tree algebras. Throughout this theory there is a close connection between the properties of the Mackey functors, and the representations of the group on which they are defined, and of its subgroups. The relationships between these representations are exactly the information encoded by Mackey functors. This observation suggests the use of Mackey functors in a new way, as tools in group representation theory.

AB - Mackey functors are a framework having the common properties of many natural constructions for finite groups, such as group cohomology, representation rings, the Burnside ring, the topological K-theory of classifying spaces, the algebraic K-theory of group rings, the Witt rings of Galois extensions, etc. In this work we first show that the Mackey functors for a group may be identified with the modules for a certain algebra, called the Mackey algebra. The study of Mackey functors is thus the same thing as the study of the representation theory of this algebra. We develop the properties of Mackey functors in the spirit of representation theory, and it emerges that there are great similarities with the representation theory of finite groups. In previous work we had classified the simple Mackey functors and demonstrated semisimplicity in characteristic zero. Here we consider the projective Mackey functors (in arbitrary characteristic), describing many of their features. We show, for example, that the Cartan matrix of the Mackey algebra may be computed from a decomposition matrix in the same way as for group representations. We determine the vertices, sources and Green correspondents of the projective and simple Mackey functors, as well as providing a way to compute the Ext groups for the simple Mackey functors. We parametrize the blocks of Mackey functors and determine the groups for which the Mackey algebra has finite representation type. It turns out that these Mackey algebras are direct sums of simple algebras and Brauer tree algebras. Throughout this theory there is a close connection between the properties of the Mackey functors, and the representations of the group on which they are defined, and of its subgroups. The relationships between these representations are exactly the information encoded by Mackey functors. This observation suggests the use of Mackey functors in a new way, as tools in group representation theory.

KW - Block

KW - Brauer tree

KW - Burnside ring

KW - Group cohomology

KW - Group representation

KW - Mackey functor

UR - http://www.scopus.com/inward/record.url?scp=0002627669&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0002627669&partnerID=8YFLogxK

U2 - 10.1090/S0002-9947-1995-1261590-5

DO - 10.1090/S0002-9947-1995-1261590-5

M3 - Article

AN - SCOPUS:0002627669

VL - 347

SP - 1865

EP - 1961

JO - Transactions of the American Mathematical Society

JF - Transactions of the American Mathematical Society

SN - 0002-9947

IS - 6

ER -