Abstract
The SaeRS two-component system plays important roles in regulation of key virulence factors and pathogenicity. In this study, however, we found that the deletion mutation of saeRS enhanced bacterial survival in human blood, whereas complementation of the mutant with SaeRS returned survival to wild-type levels. Moreover, these phenomena were observed in different MRSA genetic background isolates, including HA-MRSA WCUH29, CA-MRSA 923, and MW2. To elucidate which gene(s) regulated by SaeRS contribute to the effect, we conducted a series of complementation studies with selected known SaeRS target genes in trans. We found coagulase complementation abolished the enhanced survival of the SaeRS mutant in human blood. The coa and saeRS deletion mutants exhibited a similar survival phenotype in blood. Intriguingly, heterologous expression of coagulase decreased survival of S. epidermidis in human blood. Further, the addition of recombinant coagulase to blood significantly decreased the survival of S. aureus. Further, analysis revealed staphylococcal resistance to killing by hydrogen peroxide was partially dependent on the presence or absence of coagulase. Furthermore, complementation with coagulase, but not SaeRS, returned saeRS/coa double mutant survival in blood to wild-type levels. These data indicate SaeRS modulates bacterial survival in blood in coagulase-dependent manner. Our results provide new insights into the role of staphylococcal SaeRS and coagulase on bacterial survival in human blood.
Original language | English (US) |
---|---|
Article number | 204 |
Journal | Frontiers in Cellular and Infection Microbiology |
Volume | 7 |
Issue number | MAY |
DOIs | |
State | Published - May 29 2017 |
Bibliographical note
Funding Information:We thank Dr. Voyich for kindly providing MW2 and MW2/saeRS knockout mutant strains, and Michelle M. Ji for critical reading and editing the manuscript. This study was partially supported by China Scholarship Council No. 201308220113 (HG) and the National Science Foundation of Jilin Province No. 20170101027JC (HG), by a grant AI078951 from the National Institutes of Health (YJ), and by a grant from the USDA/Minnesota agriculture station.
Publisher Copyright:
© 2017 Guo, Hall, Yang and Ji.
Keywords
- S
- SaeRS
- aureus
- coagulase
- survival
- two-component system