The Role of Vimentin in Human Corneal Fibroblast Spreading and Myofibroblast Transformation

Miguel Miron-Mendoza, Kara Poole, Sophie DiCesare, Emi Nakahara, Meet Paresh Bhatt, John D. Hulleman, Walter Matthew Petroll

Research output: Contribution to journalArticlepeer-review

Abstract

Vimentin has been reported to play diverse roles in cell processes such as spreading, migration, cell–matrix adhesion, and fibrotic transformation. Here, we assess how vimentin impacts cell spreading, morphology, and myofibroblast transformation of human corneal fibroblasts. Overall, although knockout (KO) of vimentin did not dramatically impact corneal fibroblast spreading and mechanical activity (traction force), cell elongation in response to PDGF was reduced in vimentin KO cells as compared to controls. Blocking vimentin polymerization using Withaferin had even more pronounced effects on cell spreading and also inhibited cell-induced matrix contraction. Furthermore, although absence of vimentin did not completely block TGFβ-induced myofibroblast transformation, the degree of transformation and amount of αSMA protein expression was reduced. Proteomics showed that vimentin KO cells cultured in TGFβ had a similar pattern of protein expression as controls. One exception included periostin, an ECM protein associated with wound healing and fibrosis in other cell types, which was highly expressed only in Vim KO cells. We also demonstrate for the first time that LRRC15, a protein previously associated with myofibroblast transformation of cancer-associated fibroblasts, is also expressed by corneal myofibroblasts. Interestingly, proteins associated with LRRC15 in other cell types, such as collagen, fibronectin, β1 integrin and α11 integrin, were also upregulated. Overall, our data show that vimentin impacts both corneal fibroblast spreading and myofibroblast transformation. We also identified novel proteins that may regulate corneal myofibroblast transformation in the presence and/or absence of vimentin.

Original languageEnglish (US)
Article number1094
JournalCells
Volume13
Issue number13
DOIs
StatePublished - Jul 2024

Bibliographical note

Publisher Copyright:
© 2024 by the authors.

Keywords

  • PDGF
  • TGFβ
  • cornea
  • cytoskeleton
  • fibroblasts
  • myofibroblasts
  • vimentin
  • wound healing

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'The Role of Vimentin in Human Corneal Fibroblast Spreading and Myofibroblast Transformation'. Together they form a unique fingerprint.

Cite this