TY - JOUR
T1 - The role of peripheral spectro-temporal coding in congenital amusia
AU - Cousineau, Marion
AU - Oxenham, Andrew J.
AU - Peretz, Isabelle
PY - 2013
Y1 - 2013
N2 - Congenital amusia, a neurogenetic disorder, affects primarily pitch and melody perception. Here we test the hypothesis that amusics suffer from impaired access to spectro-temporal fine-structure cues associated with low-order resolved harmonics. The hypothesis is motivated by the fact that tones containing only unresolved harmonics result in poorer pitch sensitivity in normal-hearing listeners. F0DLs were measured in amusics and matched controls for harmonic complexes containing either resolved or unresolved harmonics. Sensitivity to temporal-fine-structure was assessed via interaural-time- difference (ITD) thresholds, intensity resolution was probed via interaural-level-difference (ILD) thresholds and intensity difference limens, and spectral resolution was estimated using the notched-noise method. As expected, F0DLs were elevated in amusics for resolved harmonics; however, no difference between amusics and controls was found for F0DLs using unresolved harmonics. The deficit appears unlikely to be due to temporal-fine-structure coding, as ITD thresholds were unimpaired in the amusic group. In addition, no differences were found between the two groups in ILD thresholds, intensity difference limens, or auditory-filter bandwidths. Overall the results suggest a pitch-specific deficit in fine spectro-temporal information processing in amusia that cannot be ascribed to defective temporal-fine-structure or spectral encoding in the auditory periphery.
AB - Congenital amusia, a neurogenetic disorder, affects primarily pitch and melody perception. Here we test the hypothesis that amusics suffer from impaired access to spectro-temporal fine-structure cues associated with low-order resolved harmonics. The hypothesis is motivated by the fact that tones containing only unresolved harmonics result in poorer pitch sensitivity in normal-hearing listeners. F0DLs were measured in amusics and matched controls for harmonic complexes containing either resolved or unresolved harmonics. Sensitivity to temporal-fine-structure was assessed via interaural-time- difference (ITD) thresholds, intensity resolution was probed via interaural-level-difference (ILD) thresholds and intensity difference limens, and spectral resolution was estimated using the notched-noise method. As expected, F0DLs were elevated in amusics for resolved harmonics; however, no difference between amusics and controls was found for F0DLs using unresolved harmonics. The deficit appears unlikely to be due to temporal-fine-structure coding, as ITD thresholds were unimpaired in the amusic group. In addition, no differences were found between the two groups in ILD thresholds, intensity difference limens, or auditory-filter bandwidths. Overall the results suggest a pitch-specific deficit in fine spectro-temporal information processing in amusia that cannot be ascribed to defective temporal-fine-structure or spectral encoding in the auditory periphery.
UR - http://www.scopus.com/inward/record.url?scp=84878956578&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878956578&partnerID=8YFLogxK
U2 - 10.1121/1.4799578
DO - 10.1121/1.4799578
M3 - Conference article
AN - SCOPUS:84878956578
SN - 1939-800X
VL - 19
JO - Proceedings of Meetings on Acoustics
JF - Proceedings of Meetings on Acoustics
M1 - 050075
T2 - 21st International Congress on Acoustics, ICA 2013 - 165th Meeting of the Acoustical Society of America
Y2 - 2 June 2013 through 7 June 2013
ER -