The role of nonmotor brain regions during human motor control

Jacob J. Johnson, Macauley S. Breault, Pierre Sacre, Matthew S.D. Kerr, Mathew Johnson, Juan Bulacio, Jorge Gonzalez-Martinez, Sridevi V. Sarma, John T. Gale

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Neural prostheses have generally relied on signals from cortical motor regions to control reaching movements of a robotic arm. However, little work has been done in exploring the involvement of nonmotor cortical and associative regions during motor tasks. In this study, we identify regions which may encode direction during planning and movement of a center-out motor task. Local field potentials were collected using stereoelectroencephalography (SEEG) from nine epilepsy patients implanted with multiple depth electrodes for clinical purposes. Spectral analysis of the recorded data was performed using nonparametric statistical techniques to identify regions that may encode direction of movements during the motor task. The analysis revealed several nonmotor regions; including the right insular cortex, right temporal pole, right superior parietal lobule, and the right lingual gyrus, that encode directionality before and after movement onset. We observed that each of these regions encode direction in different frequency bands. This preliminary study suggests that nonmotor regions may be useful in assisting in neural prosthetic control.

Original languageEnglish (US)
Title of host publication2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationSmarter Technology for a Healthier World, EMBC 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2498-2501
Number of pages4
ISBN (Electronic)9781509028092
DOIs
StatePublished - Sep 13 2017
Externally publishedYes
Event39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017 - Jeju Island, Korea, Republic of
Duration: Jul 11 2017Jul 15 2017

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017
Country/TerritoryKorea, Republic of
CityJeju Island
Period7/11/177/15/17

Bibliographical note

Funding Information:
This work was supported by a National Science Foundation grant (EFRI-MC3: # 1137237) awarded to S.V.S., J.A.G., J.B. and J.T.G.

Publisher Copyright:
© 2017 IEEE.

Fingerprint

Dive into the research topics of 'The role of nonmotor brain regions during human motor control'. Together they form a unique fingerprint.

Cite this