Abstract
Background: The molecular basis of the increased susceptibility of steatotic livers to warm ischemia/reperfusion (I/R) injury during transplantation remains undefined. Animal model for warm I/R injury was induced in obese Zucker rats. Lean Zucker rats provided controls. Two dimensional differential gel electrophoresis was performed with liver protein extracts. Protein features with significant abundance ratios (p < 0.01) between the two cohorts were selected and analyzed with HPLC/MS. Proteins were identified by Uniprot database. Interactive protein networks were generated using Ingenuity Pathway Analysis and GRANITE software. Results: The relative abundance of 105 proteins was observed in warm I/R injury. Functional grouping revealed four categories of importance: molecular chaperones/endoplasmic reticulum (ER) stress, oxidative stress, metabolism, and cell structure. Hypoxia up-regulated 1, calcium binding protein 1, calreticulin, heat shock protein (HSP) 60, HSP-90, and protein disulfide isomerase 3 were chaperonins significantly (p < 0.01) down-regulated and only one chaperonin, HSP-1was significantly upregulated in steatotic liver following I/R. Conclusion: Down-regulation of the chaperones identified in this analysis may contribute to the increased ER stress and, consequently, apoptosis and necrosis. This study provides an initial platform for future investigation of the role of chaperones and therapeutic targets for increasing the viability of steatotic liver allografts.
Original language | English (US) |
---|---|
Article number | 17 |
Journal | BMC Biochemistry |
Volume | 13 |
Issue number | 1 |
DOIs | |
State | Published - 2012 |
Bibliographical note
Funding Information:This work was supported by grants from the NIH National Center for Research Resources P01 HL66196-01(WCC); P41 RR00954 and UL1 RR024992 (RRT); and NIH 5T32CA00962120 (KDC). The NIH did not play a role in study design; in the collection, analysis, and interpretation of data; in the writing of the manuscript; or in the decision to submit the paper for publication. The authors thank Petra Erdmann-Gilmore and Alan E. Davis for expert technical assistance and for performing the LC-MS analysis.
Keywords
- Chaperonins
- Endoplasmic reticulum (ER) stress
- Ischemia repurfusion injury
- Liver transplantation
- Mass spectrometry
- Two dimensional gel electrophoresis