TY - JOUR
T1 - The relative symplectic cone and T2-fibrations
AU - Dorfmeister, Josef G.
AU - Li, Tian Jun
PY - 2010/3
Y1 - 2010/3
N2 - In this note we introduce the notion of the relative symplectic cone CMV. As an application, we determine the symplectic cone CM of certain T2-fibrations. In particular, for some elliptic surfaces we verify the conjecture in [17]: If M underlies a minimal Kähler surface with pg > 0, the symplectic cone CM is equal to Pc1(M) ∪ P-c(M), where Pα = {e ∈ H2(M;R)|e·e > 0 and e·α > 0} for nonzero α ∈ H2(M;R) and P0 = {e ∈ H2(M;R)|e·e > 0}.
AB - In this note we introduce the notion of the relative symplectic cone CMV. As an application, we determine the symplectic cone CM of certain T2-fibrations. In particular, for some elliptic surfaces we verify the conjecture in [17]: If M underlies a minimal Kähler surface with pg > 0, the symplectic cone CM is equal to Pc1(M) ∪ P-c(M), where Pα = {e ∈ H2(M;R)|e·e > 0 and e·α > 0} for nonzero α ∈ H2(M;R) and P0 = {e ∈ H2(M;R)|e·e > 0}.
UR - http://www.scopus.com/inward/record.url?scp=77957112776&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957112776&partnerID=8YFLogxK
U2 - 10.4310/JSG.2010.v8.n1.a1
DO - 10.4310/JSG.2010.v8.n1.a1
M3 - Article
AN - SCOPUS:77957112776
SN - 1527-5256
VL - 8
SP - 1
EP - 35
JO - Journal of Symplectic Geometry
JF - Journal of Symplectic Geometry
IS - 1
ER -