Abstract
Background: We have shown that the differentiation of human-induced pluripotent stem cells (hiPSCs) into endothelial cells (ECs) is more efficient when performed with a 3-dimensional (3D) scaffold of biomaterial than in monolayers. The current study aims to further increase hiPSC-EC differentiation efficiency by deciphering the signaling pathways in 3D scaffolds. Methods and results: We modified our 3D protocol by using U-46619 to upregulate both p38 mitogen-activated protein kinase (p38MAPK) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, which increased the differentiation efficiency (as measured by CD31 expression) to as high as 89% in two established hiPSC lines. The differentiated cells expressed arteriovenous, but not lymphatic, markers; formed tubular structures and EC lumen in vitro; had significantly shorter population-doubling times than monolayer-differentiated hiPSC-ECs; and restored perfusion and vascularity in a murine hind limb ischemia model. The differentiation efficiency was also > 85% in three hiPSC lines that had been derived from patients with diseases or disease symptoms that have been linked to endothelial dysfunction. Conclusions: These observations demonstrate that activating both p38MAPK and ERK1/2 signaling pathways with U-46619 improves the efficiency of arteriovenous hiPSC-EC differentiation and produces cells with greater proliferative capacity.
Original language | English (US) |
---|---|
Article number | 313 |
Journal | Stem Cell Research and Therapy |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - Nov 15 2018 |
Bibliographical note
Funding Information:The study was supported by Disease Model Core of National Heart Research Institute Singapore. We thank Chenxu Wang for the technical support in Periscan study and Zhonghao Tao for the technical support in angiogenesis analyzer of ImageJ.
Publisher Copyright:
© 2018 The Author(s).
Keywords
- Endothelial differentiation
- Human-induced pluripotent stem cells
- Signaling pathways