Abstract
Vibrio vulnificus is an estuarine bacterium and potent opportunistic human pathogen. It enters the food chain by asymptomatically colonizing a variety of marine organisms, most notably oysters. Expression of the brp-encoded extracellular polysaccharide, which enhances cell-surface adherence, is regulated by cyclic di-GMP (c-di-GMP) and the activator BrpT. The Vibrio cholerae and Vibrio parahaemolyticus homologs VpsT and CpsQ, directly bind c-di-GMP via a novel W[F/L/M][T/S]R motif, and c-di-GMP binding is absolutely required for activity. Notably, BrpT belongs to a distinct subclass of VpsT-like regulators that harbor a proline in the third position of the c-di-GMP binding motif (WLPR), and the impact of this change on activity is unknown. We show that the brp locus is organized as two linked operons with BrpT specifically binding to promoters upstream of brpA and brpH. Expression data and structural modeling suggested that BrpT might be less dependent on c-di-GMP binding for activity than VpsT or CpsQ. We show that the affinity of BrpT for c-di- GMP is low and that signal binding is not a requisite for BrpT function. Furthermore, a BrpT mutant engineered to carry a canonical WLTR motif (BrpTP124T) bound c-di- GMP with high affinity and its activity was now c-di-GMP dependent. Conversely, introduction of the WLPR motif into VpsT suppressed its dependence on c-di-GMP for activity. This is the first demonstration of reduced dependence on signal association for regulator function within this motif family. Thus, BrpT defines a new class of VpsT-like transcriptional regulators, and the WLPR motif variant may similarly liberate the activity of other subclass members.
Original language | English (US) |
---|---|
Article number | e00344-17 |
Journal | Journal of bacteriology |
Volume | 199 |
Issue number | 19 |
DOIs | |
State | Published - 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 American Society for Microbiology.
Keywords
- Biofilms
- C-di-GMP
- Foodborne pathogens
- Regulation of gene expression