The oxidation of macroporous cerium and cerium-zirconium oxide for the solar thermochemical production of fuels

Luke J. Venstrom, Nicholas Petkovich, Stephen Rudisill, Andreas Stein, Jane H Davidson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

The H2 and CO productivity and reactivity of three-dimensionally ordered macroporous (3DOM) cerium and cerium-zirconium oxide upon H 2O and CO2 oxidation at 1073K is presented in comparison to the productivity and reactivity of non-ordered porous and low porosity cerium oxide. The production of H2 and CO constitutes the second step of the two-step solar thermochemical H2O and CO2 splitting cycles. The 3DOM cerium oxide, with a specific surface area of 25 m2 g-1, increases the average H2 and CO production rates over the non-ordered porous cerium oxide with a specific surface area of 112 m 2 g-1: the average H2 production rate increases from 5.2 cm3 g-1 min-1 to 7.9 cm3 g-1 min-1 and the average CO production rate increases from 7.7 cm3 g-1 min-1 to 21.9 cm3 g-1 min-1. The superior reactivity of 3DOM cerium oxide is attributed primarily to the stability of the 3DOM structure and also to the improved transport of reacting species to and from oxidation sites realized with the interconnected and ordered pores of the 3DOM structure. Doping the 3DOM cerium oxide with 20 mol% zirconia further stabilizes the structure and increases the average H2 and CO production rates to 10.2 cm 3 g-1 min-1 and 22.1 cm3 g -1 min-1, respectively.

Original languageEnglish (US)
Title of host publicationASME 2011 5th International Conference on Energy Sustainability, ES 2011
Pages1585-1593
Number of pages9
EditionPARTS A, B, AND C
DOIs
StatePublished - Dec 1 2011
EventASME 2011 5th International Conference on Energy Sustainability, ES 2011 - Washington, DC, United States
Duration: Aug 7 2011Aug 10 2011

Publication series

NameASME 2011 5th International Conference on Energy Sustainability, ES 2011
NumberPARTS A, B, AND C

Other

OtherASME 2011 5th International Conference on Energy Sustainability, ES 2011
CountryUnited States
CityWashington, DC
Period8/7/118/10/11

Fingerprint Dive into the research topics of 'The oxidation of macroporous cerium and cerium-zirconium oxide for the solar thermochemical production of fuels'. Together they form a unique fingerprint.

Cite this