The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans

Maureen Wirschell, Heike Olbrich, Claudius Werner, Douglas Tritschler, Raqual Bower, Winfield S. Sale, Niki T. Loges, Petra Pennekamp, Sven Lindberg, Unne Stenram, Birgitta Carlén, Elisabeth Horak, Gabriele Köhler, Peter Nürnberg, Gudrun Nürnberg, Mary E. Porter, Heymut Omran

Research output: Contribution to journalArticle

110 Citations (Scopus)

Abstract

Primary ciliary dyskinesia (PCD) is characterized by dysfunction of respiratory cilia and sperm flagella and random determination of visceral asymmetry. Here, we identify the DRC1 subunit of the nexin-dynein regulatory complex (N-DRC), an axonemal structure critical for the regulation of dynein motors, and show that mutations in the gene encoding DRC1, CCDC164, are involved in PCD pathogenesis. Loss-of-function mutations disrupting DRC1 result in severe defects in assembly of the N-DRC structure and defective ciliary movement in Chlamydomonas reinhardtii and humans. Our results highlight a role for N-DRC integrity in regulating ciliary beating and provide the first direct evidence that mutations in DRC genes cause human disease.

Original languageEnglish (US)
Pages (from-to)262-268
Number of pages7
JournalNature Genetics
Volume45
Issue number3
DOIs
StatePublished - Mar 1 2013

Fingerprint

Dyneins
Cilia
Kartagener Syndrome
Mutation
Sperm Tail
Chlamydomonas reinhardtii
Genes

Cite this

Wirschell, M., Olbrich, H., Werner, C., Tritschler, D., Bower, R., Sale, W. S., ... Omran, H. (2013). The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nature Genetics, 45(3), 262-268. https://doi.org/10.1038/ng.2533

The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. / Wirschell, Maureen; Olbrich, Heike; Werner, Claudius; Tritschler, Douglas; Bower, Raqual; Sale, Winfield S.; Loges, Niki T.; Pennekamp, Petra; Lindberg, Sven; Stenram, Unne; Carlén, Birgitta; Horak, Elisabeth; Köhler, Gabriele; Nürnberg, Peter; Nürnberg, Gudrun; Porter, Mary E.; Omran, Heymut.

In: Nature Genetics, Vol. 45, No. 3, 01.03.2013, p. 262-268.

Research output: Contribution to journalArticle

Wirschell, M, Olbrich, H, Werner, C, Tritschler, D, Bower, R, Sale, WS, Loges, NT, Pennekamp, P, Lindberg, S, Stenram, U, Carlén, B, Horak, E, Köhler, G, Nürnberg, P, Nürnberg, G, Porter, ME & Omran, H 2013, 'The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans', Nature Genetics, vol. 45, no. 3, pp. 262-268. https://doi.org/10.1038/ng.2533
Wirschell M, Olbrich H, Werner C, Tritschler D, Bower R, Sale WS et al. The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nature Genetics. 2013 Mar 1;45(3):262-268. https://doi.org/10.1038/ng.2533
Wirschell, Maureen ; Olbrich, Heike ; Werner, Claudius ; Tritschler, Douglas ; Bower, Raqual ; Sale, Winfield S. ; Loges, Niki T. ; Pennekamp, Petra ; Lindberg, Sven ; Stenram, Unne ; Carlén, Birgitta ; Horak, Elisabeth ; Köhler, Gabriele ; Nürnberg, Peter ; Nürnberg, Gudrun ; Porter, Mary E. ; Omran, Heymut. / The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. In: Nature Genetics. 2013 ; Vol. 45, No. 3. pp. 262-268.
@article{9480f2e25e0f4340a10325874757c17a,
title = "The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans",
abstract = "Primary ciliary dyskinesia (PCD) is characterized by dysfunction of respiratory cilia and sperm flagella and random determination of visceral asymmetry. Here, we identify the DRC1 subunit of the nexin-dynein regulatory complex (N-DRC), an axonemal structure critical for the regulation of dynein motors, and show that mutations in the gene encoding DRC1, CCDC164, are involved in PCD pathogenesis. Loss-of-function mutations disrupting DRC1 result in severe defects in assembly of the N-DRC structure and defective ciliary movement in Chlamydomonas reinhardtii and humans. Our results highlight a role for N-DRC integrity in regulating ciliary beating and provide the first direct evidence that mutations in DRC genes cause human disease.",
author = "Maureen Wirschell and Heike Olbrich and Claudius Werner and Douglas Tritschler and Raqual Bower and Sale, {Winfield S.} and Loges, {Niki T.} and Petra Pennekamp and Sven Lindberg and Unne Stenram and Birgitta Carl{\'e}n and Elisabeth Horak and Gabriele K{\"o}hler and Peter N{\"u}rnberg and Gudrun N{\"u}rnberg and Porter, {Mary E.} and Heymut Omran",
year = "2013",
month = "3",
day = "1",
doi = "10.1038/ng.2533",
language = "English (US)",
volume = "45",
pages = "262--268",
journal = "Nature Genetics",
issn = "1061-4036",
publisher = "Nature Publishing Group",
number = "3",

}

TY - JOUR

T1 - The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans

AU - Wirschell, Maureen

AU - Olbrich, Heike

AU - Werner, Claudius

AU - Tritschler, Douglas

AU - Bower, Raqual

AU - Sale, Winfield S.

AU - Loges, Niki T.

AU - Pennekamp, Petra

AU - Lindberg, Sven

AU - Stenram, Unne

AU - Carlén, Birgitta

AU - Horak, Elisabeth

AU - Köhler, Gabriele

AU - Nürnberg, Peter

AU - Nürnberg, Gudrun

AU - Porter, Mary E.

AU - Omran, Heymut

PY - 2013/3/1

Y1 - 2013/3/1

N2 - Primary ciliary dyskinesia (PCD) is characterized by dysfunction of respiratory cilia and sperm flagella and random determination of visceral asymmetry. Here, we identify the DRC1 subunit of the nexin-dynein regulatory complex (N-DRC), an axonemal structure critical for the regulation of dynein motors, and show that mutations in the gene encoding DRC1, CCDC164, are involved in PCD pathogenesis. Loss-of-function mutations disrupting DRC1 result in severe defects in assembly of the N-DRC structure and defective ciliary movement in Chlamydomonas reinhardtii and humans. Our results highlight a role for N-DRC integrity in regulating ciliary beating and provide the first direct evidence that mutations in DRC genes cause human disease.

AB - Primary ciliary dyskinesia (PCD) is characterized by dysfunction of respiratory cilia and sperm flagella and random determination of visceral asymmetry. Here, we identify the DRC1 subunit of the nexin-dynein regulatory complex (N-DRC), an axonemal structure critical for the regulation of dynein motors, and show that mutations in the gene encoding DRC1, CCDC164, are involved in PCD pathogenesis. Loss-of-function mutations disrupting DRC1 result in severe defects in assembly of the N-DRC structure and defective ciliary movement in Chlamydomonas reinhardtii and humans. Our results highlight a role for N-DRC integrity in regulating ciliary beating and provide the first direct evidence that mutations in DRC genes cause human disease.

UR - http://www.scopus.com/inward/record.url?scp=84874658994&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84874658994&partnerID=8YFLogxK

U2 - 10.1038/ng.2533

DO - 10.1038/ng.2533

M3 - Article

C2 - 23354437

AN - SCOPUS:84874658994

VL - 45

SP - 262

EP - 268

JO - Nature Genetics

JF - Nature Genetics

SN - 1061-4036

IS - 3

ER -