The mobilities of flame synthesized aggregates/agglomerates in the transition regime

Thaseem Thajudeen, Seongho Jeon, Christopher J. Hogan

Research output: Contribution to journalArticlepeer-review

36 Scopus citations


Mobility analysis is frequently used to evaluate the size distribution of nanoparticle aggregates synthesized in high temperature, gas phase environments, such as flames. Theoretically, the scalar mobilities of such non-spherical entities, whose characteristic sizes are similar to the mean free path of their background gas (λ), are dependent on two size descriptors, the hydrodynamic radius (RH) and the orientationally averaged projected area (PA) (as well as λ). Unfortunately, the theoretical relationship linking the mobility to RH and PA for aggregates has not been experimentally tested, and has often been discarded in lieu of simpler yet theoretically invalid expressions. Here, we examine the mobilities of flame synthesized titanium dioxide (TiO2) aggregates to directly test the link between the mobility, RH, PA, and λ. Flame synthesized aggregates with mobility equivalent diameters in air in the 45-80nm range were classified with a differential mobility analyzer (DMA) and deposited on a transmission electron microscope (TEM) grid for subsequent imaging. Probable 3-dimensional structures for each imaged aggregate were constructed, based on the assumption that aggregates were quasifractal in nature and by comparing four 2-dimensional size descriptors calculated for images to those of computationally generated projections of quasifractal aggregates (of prescribed pre-exponential factor, fractal dimension, and number of primary particles). The calculated mobilities for the 3-dimensional structures inverted for each image are found to be in excellent agreement with their mobilities inferred from DMA classification, supporting the theoretically proposed relationship between the mobility and RH, PA, and λ in the Kn=πλRH/PA=1.27-4.11 range. Although a wide range of fractal dimensions and pre-exponential factors are inferred for the observed aggregates, the volumes of the reconstructed aggregates are still found to scale with the mobility diameters.

Original languageEnglish (US)
Pages (from-to)45-57
Number of pages13
JournalJournal of Aerosol Science
StatePublished - Feb 1 2015

Bibliographical note

Funding Information:
This work was supported by NSF grant CBET-1133285 , which provided funds for materials and supplies and to support T.T and S.J. T.T. further partial acknowledges support from the University of Minnesota Center for Filtration Research . We also thank the University of Minnesota Supercomputing Institute (MSI) for providing the high performance computing resources used in calculations and the University of Minnesota Characterization Facility (CharFac), which houses and maintains the FEI Tecnai T12 transmission electron microscope used in aggregate analysis.


  • Agglomerates
  • Aggregates
  • Flame synthesis
  • Mobility analysis

How much support was provided by MRSEC?

  • Shared


Dive into the research topics of 'The mobilities of flame synthesized aggregates/agglomerates in the transition regime'. Together they form a unique fingerprint.

Cite this