The influence of coolant supply geometry on film coolant exit flow and surface adiabatic effectiveness

Steven W. Burd, Terrence W. Simon

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

Experimental hot-wire anemometry and thermocouple measurements are taken to document the sensitivity which film cooling performance has to the hole length and the geometry of the plenum which supplies cooling flow to the holes. This sensitivity is described in terms of the effects these geometric features have on hole-exit velocity and turbulence intensity distributions and on adiabatic effectiveness values on the surface downstream. These measurements were taken under high freesutam turbulence intensity (12%) conditions, representative of operating gas turbine engines. Coolant is supplied to the film cooling holes . by means of (1) an unrestricted plenum, (2) a plenum which restricts the flow approaching the holes, forcing it to flow co-current with the freestream. and (3) a plenum which forces the flow to approach the holes counter-current with the freestream. Short-hole (L/D=2.3) and long-hole (1JD=7.0) comparisons are made. The geometry has a single row of film cooling holes with 35°-inclined streamwise injection. The film cooling flow is supplied at the same temperature as that of the freestrearn for hole-exit measurements and 10°C above the freestream temperature for adiabatic effectiveness measurements, yielding density ratios in the range 0.96-1.0. Two coolant-to-freestream velocity ratios, 0.5 and 1.0, are investigated. The results document the effects of (1) supply plenum geometry, (2) velocity ratio, and (3) hole L/D.

Original languageEnglish (US)
Title of host publicationHeat Transfer; Electric Power; Industrial and Cogeneration
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791878705
DOIs
StatePublished - 1997
EventASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1997 - Orlando, United States
Duration: Jun 2 1997Jun 5 1997

Publication series

NameProceedings of the ASME Turbo Expo
Volume3

Other

OtherASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1997
Country/TerritoryUnited States
CityOrlando
Period6/2/976/5/97

Bibliographical note

Publisher Copyright:
Copyright © 1997 by ASME.

Fingerprint

Dive into the research topics of 'The influence of coolant supply geometry on film coolant exit flow and surface adiabatic effectiveness'. Together they form a unique fingerprint.

Cite this