Abstract
Experimental hot-wire anemometry and thermocouple measurements are taken to document the sensitivity which film cooling performance has to the hole length and the geometry of the plenum which supplies cooling flow to the holes. This sensitivity is described in terms of the effects these geometric features have on hole-exit velocity and turbulence intensity distributions and on adiabatic effectiveness values on the surface downstream. These measurements were taken under high freesutam turbulence intensity (12%) conditions, representative of operating gas turbine engines. Coolant is supplied to the film cooling holes . by means of (1) an unrestricted plenum, (2) a plenum which restricts the flow approaching the holes, forcing it to flow co-current with the freestream. and (3) a plenum which forces the flow to approach the holes counter-current with the freestream. Short-hole (L/D=2.3) and long-hole (1JD=7.0) comparisons are made. The geometry has a single row of film cooling holes with 35°-inclined streamwise injection. The film cooling flow is supplied at the same temperature as that of the freestrearn for hole-exit measurements and 10°C above the freestream temperature for adiabatic effectiveness measurements, yielding density ratios in the range 0.96-1.0. Two coolant-to-freestream velocity ratios, 0.5 and 1.0, are investigated. The results document the effects of (1) supply plenum geometry, (2) velocity ratio, and (3) hole L/D.
Original language | English (US) |
---|---|
Title of host publication | Heat Transfer; Electric Power; Industrial and Cogeneration |
Publisher | American Society of Mechanical Engineers (ASME) |
ISBN (Electronic) | 9780791878705 |
DOIs | |
State | Published - 1997 |
Event | ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1997 - Orlando, United States Duration: Jun 2 1997 → Jun 5 1997 |
Publication series
Name | Proceedings of the ASME Turbo Expo |
---|---|
Volume | 3 |
Other
Other | ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1997 |
---|---|
Country/Territory | United States |
City | Orlando |
Period | 6/2/97 → 6/5/97 |
Bibliographical note
Publisher Copyright:Copyright © 1997 by ASME.