TY - JOUR
T1 - The in vitro and in vivo effects of anti-galactose antibodies on endothelial cell activation and xenograft rejection
AU - Xu, Hui
AU - Yin, Dengping
AU - Naziruddin, Bashoo
AU - Chen, Libing
AU - Stark, Aileen
AU - Wei, Yuanyuan
AU - Lei, Ying
AU - Shen, Ji Kun
AU - Logan, John S.
AU - Byrne, Guerard W.
AU - Chong, Anita S.F.
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2003/2/1
Y1 - 2003/2/1
N2 - We have previously produced a series of antigalactose (anti-Gal) hybridomas and characterized their heavy chain gene usage. Here we have quantified the affinity of these Abs for the α-Gal epitope and characterized their in vitro effects on endothelial cell activation and apoptosis. We report that anti-Gal mAbs derived from Gal-/- mice show a range of affinity for the α-Gal epitope, and that affinity was generally increased as the VH gene usage transitioned from germline sequences to sequences exhibiting somatic maturation. Despite an 85-fold range in affinity, all the anti-Gal mAbs examined induced α-Gal-specific endothelial cell activation, and after prolonged exposure induced endothelial cell apoptosis in a complement-independent manner. Only murine anti-Gal mAbs of the IgM or IgG3 subclass, but not IgG1, were effective at initiating complement-dependent cell lysis. Using a novel rat to mouse xenograft model, we examined the in vivo ability of these mAbs to induce xenograft rejection and characterized the rejection using histology and immunohistochemistry. Infusion of complement-fixing IgG3 mAbs resulted in either hyperacute rejection or acute vascular rejection of the xenograft. Surprisingly, infusion of an equal amount of a high affinity anti-Gal IgG1 mAb, that fixed complement poorly also induced a rapid xenograft rejection, which we have labeled very acute rejection. These studies emphasize the importance of in vivo assays, in addition to in vitro assays, in understanding the role of anti-Gal IgG-mediated tissue injury and xenograft rejection.
AB - We have previously produced a series of antigalactose (anti-Gal) hybridomas and characterized their heavy chain gene usage. Here we have quantified the affinity of these Abs for the α-Gal epitope and characterized their in vitro effects on endothelial cell activation and apoptosis. We report that anti-Gal mAbs derived from Gal-/- mice show a range of affinity for the α-Gal epitope, and that affinity was generally increased as the VH gene usage transitioned from germline sequences to sequences exhibiting somatic maturation. Despite an 85-fold range in affinity, all the anti-Gal mAbs examined induced α-Gal-specific endothelial cell activation, and after prolonged exposure induced endothelial cell apoptosis in a complement-independent manner. Only murine anti-Gal mAbs of the IgM or IgG3 subclass, but not IgG1, were effective at initiating complement-dependent cell lysis. Using a novel rat to mouse xenograft model, we examined the in vivo ability of these mAbs to induce xenograft rejection and characterized the rejection using histology and immunohistochemistry. Infusion of complement-fixing IgG3 mAbs resulted in either hyperacute rejection or acute vascular rejection of the xenograft. Surprisingly, infusion of an equal amount of a high affinity anti-Gal IgG1 mAb, that fixed complement poorly also induced a rapid xenograft rejection, which we have labeled very acute rejection. These studies emphasize the importance of in vivo assays, in addition to in vitro assays, in understanding the role of anti-Gal IgG-mediated tissue injury and xenograft rejection.
UR - http://www.scopus.com/inward/record.url?scp=0037310382&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037310382&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.170.3.1531
DO - 10.4049/jimmunol.170.3.1531
M3 - Article
C2 - 12538718
AN - SCOPUS:0037310382
SN - 0022-1767
VL - 170
SP - 1531
EP - 1539
JO - Journal of Immunology
JF - Journal of Immunology
IS - 3
ER -