The impact of averaging window length on the "Desaturation" indexes obtained via overnight pulse oximetry at high altitude

Troy J. Cross, Manda Keller-Ross, Amine Issa, Robert Wentz, Bryan Taylor, Bruce Johnson

Research output: Contribution to journalArticle

5 Scopus citations


Study Objectives: To determine the impact of averaging window-length on the "desaturation" indexes (DIs) obtained via overnight pulse oximetry (SpO2) at high altitude. Design: Overnight SpO2 data were collected during a 10-day sojourn at high altitude. SpO2 was obtained using a commercial wrist-worn finger oximeter whose firmware was modified to store unaveraged beat-to-beat data. Simple moving averages of window lengths spanning 2 to 20 cardiac beats were retrospectively applied to beat-to-beat SpO2 datasets. After SpO2 artifacts were removed, the following DIs were then calculated for each of the averaged datasets: oxygen desaturation index (ODI); total sleep time with SpO2 < 80% (TST < 80), and the lowest SpO2 observed during sleep (SpO2 low). Setting: South Base Camp, Mt. Everest (5,364 m elevation). Participants: Five healthy, adult males (35 ± 5 y; 180 ± 1 cm; 85 ± 4 kg). Interventions: N/A. Measurements and Results: 49 datasets were obtained from the 5 participants, totalling 239 hours of data. For all window lengths ≥ 2 beats, ODI and TST < 80 were lower, and SpO2 low was higher than those values obtained from the beat-to-beat SpO2 time series data (P < 0.05). Conclusions: Our findings indicate that increasing oximeter averaging window length progressively underestimates the frequency and magnitude of sleep disordered breathing events at high altitude, as indirectly assessed via the desaturation indexes.

Original languageEnglish (US)
Pages (from-to)1331-1334
Number of pages4
Issue number8
StatePublished - Aug 1 2015



  • High altitude
  • Moving averages
  • Pulse oximetry
  • Sleep

Cite this