TY - JOUR
T1 - The gut microbiome and resistome of yellow perch (Perca flavescens) living in Minnesota lakes under varying anthropogenic pressure
AU - Jimenez-Lopez, Omar
AU - Ray, Tui
AU - Dean, Christopher
AU - Slizovskiy, Ilya
AU - Deere, Jessica
AU - Wolf, Tiffany
AU - Moore, Seth
AU - Primus, Alexander
AU - Høy-Petersen, Jennifer
AU - Finstad, Silje
AU - Mo, Jakob
AU - Sørum, Henning
AU - Noyes, Noelle
N1 - Publisher Copyright:
© 2024
PY - 2024/12
Y1 - 2024/12
N2 - Anthropogenic activities can significantly impact wildlife in natural water bodies, affecting not only the host's physiology but also its microbiome. This study aimed to analyze the gut microbiome and antimicrobial resistance gene profile (i.e., the resistome) of yellow perch living in lakes subjected to different levels of anthropogenic pressure: wastewater effluent-impacted lakes and undeveloped lakes. Total DNA and RNA from gut content samples were extracted and sequenced for analysis. Results indicate that the gut resistome and microbiome of yellow perch differ between lakes, perhaps due to varying anthropogenic pressure. The resistome was predominated by macrolide resistance genes, particularly the MLS23S group, making up 53 % of resistome sequences from effluent-impacted lakes and 73 % from undeveloped lakes. The colistin resistance gene group (mcr) was detected in numerous samples, including variants associated with Aeromonas and the family Enterobacteriaceae. The gut microbiome across all samples was dominated by the phyla Proteobacteria, Firmicutes, and Actinobacteria, with the opportunistic pathogens Plesiomonas shigelloides and Aeromonas veronii more abundant in effluent-impacted lakes. Metagenomic analysis of wild fish samples offers valuable insights into the effects of anthropogenic pressures on microbial communities, including antimicrobial resistance genes, in water bodies.
AB - Anthropogenic activities can significantly impact wildlife in natural water bodies, affecting not only the host's physiology but also its microbiome. This study aimed to analyze the gut microbiome and antimicrobial resistance gene profile (i.e., the resistome) of yellow perch living in lakes subjected to different levels of anthropogenic pressure: wastewater effluent-impacted lakes and undeveloped lakes. Total DNA and RNA from gut content samples were extracted and sequenced for analysis. Results indicate that the gut resistome and microbiome of yellow perch differ between lakes, perhaps due to varying anthropogenic pressure. The resistome was predominated by macrolide resistance genes, particularly the MLS23S group, making up 53 % of resistome sequences from effluent-impacted lakes and 73 % from undeveloped lakes. The colistin resistance gene group (mcr) was detected in numerous samples, including variants associated with Aeromonas and the family Enterobacteriaceae. The gut microbiome across all samples was dominated by the phyla Proteobacteria, Firmicutes, and Actinobacteria, with the opportunistic pathogens Plesiomonas shigelloides and Aeromonas veronii more abundant in effluent-impacted lakes. Metagenomic analysis of wild fish samples offers valuable insights into the effects of anthropogenic pressures on microbial communities, including antimicrobial resistance genes, in water bodies.
KW - Anthropogenic pressure
KW - Antimicrobial resistance
KW - Metagenomics
KW - Transcriptomics
KW - Yellow perch
UR - http://www.scopus.com/inward/record.url?scp=85209111217&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85209111217&partnerID=8YFLogxK
U2 - 10.1016/j.onehlt.2024.100933
DO - 10.1016/j.onehlt.2024.100933
M3 - Article
C2 - 39624158
AN - SCOPUS:85209111217
SN - 2352-7714
VL - 19
JO - One Health
JF - One Health
M1 - 100933
ER -