The greedy basis equals the theta basis: A rank two haiku

Man Wai Cheung, Mark Gross, Greg Muller, Gregg Musiker, Dylan Rupel, Salvatore Stella, Harold Williams

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

We prove the equality of two canonical bases of a rank 2 cluster algebra, the greedy basis of Lee–Li–Zelevinsky and the theta basis of Gross–Hacking–Keel–Kontsevich.

Original languageEnglish (US)
Pages (from-to)150-171
Number of pages22
JournalJournal of Combinatorial Theory. Series A
Volume145
DOIs
StatePublished - Jan 1 2017

Bibliographical note

Publisher Copyright:
© 2016

Keywords

  • Broken lines
  • Cluster algebras
  • Greedy basis
  • Scattering diagrams
  • Theta functions

Fingerprint

Dive into the research topics of 'The greedy basis equals the theta basis: A rank two haiku'. Together they form a unique fingerprint.

Cite this