The generalization of prior uncertainty during reaching

Iris Vilares, Hugo L. Fernandes, Ian H. Stevenson, Konrad P. Kording

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Bayesian statistics defines how new information, given by a likelihood, should be combined with previously acquired information, given by a prior distribution. Many experiments have shown that humans make use of such priors in cognitive, perceptual, and motor tasks, but where do priors come from? As people never experience the same situation twice, they can only construct priors by generalizing from similar past experiences. Here we examine the generalization of priors over stochastic visuomotor perturbations in reaching experiments. In particular, we look into how the first two moments of the prior-the mean and variance (uncertainty)-generalize. We find that uncertainty appears to generalize differently from the mean of the prior, and an interesting asymmetry arises when the mean and the uncertainty are manipulated simultaneously.

Original languageEnglish (US)
Pages (from-to)11470-11484
Number of pages15
JournalJournal of Neuroscience
Volume34
Issue number45
DOIs
StatePublished - Aug 20 2014
Externally publishedYes

Keywords

  • Bayesian
  • Generalization
  • Prior
  • Uncertainty
  • Visuomotor rotation

Fingerprint

Dive into the research topics of 'The generalization of prior uncertainty during reaching'. Together they form a unique fingerprint.

Cite this