The full spectrum of SLC22 OCT1 mutations illuminates the bridge between drug transporter biophysics and pharmacogenomics

Sook Wah Yee, Christian B. Macdonald, Darko Mitrovic, Xujia Zhou, Megan L. Koleske, Jia Yang, Dina Buitrago Silva, Patrick Rockefeller Grimes, Donovan D. Trinidad, Swati S. More, Linda Kachuri, John S. Witte, Lucie Delemotte, Kathleen M. Giacomini, Willow Coyote-Maestas

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Mutations in transporters can impact an individual's response to drugs and cause many diseases. Few variants in transporters have been evaluated for their functional impact. Here, we combine saturation mutagenesis and multi-phenotypic screening to dissect the impact of 11,213 missense single-amino-acid deletions, and synonymous variants across the 554 residues of OCT1, a key liver xenobiotic transporter. By quantifying in parallel expression and substrate uptake, we find that most variants exert their primary effect on protein abundance, a phenotype not commonly measured alongside function. Using our mutagenesis results combined with structure prediction and molecular dynamic simulations, we develop accurate structure-function models of the entire transport cycle, providing biophysical characterization of all known and possible human OCT1 polymorphisms. This work provides a complete functional map of OCT1 variants along with a framework for integrating functional genomics, biophysical modeling, and human genetics to predict variant effects on disease and drug efficacy.

Original languageEnglish (US)
Pages (from-to)1932-1947.e10
JournalMolecular Cell
Volume84
Issue number10
DOIs
StatePublished - May 16 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2024 Elsevier Inc.

Keywords

  • OCT1
  • SLC22
  • deep mutational scanning
  • drug transporter
  • membrane protein folding
  • pharmacogenomics
  • precision medicine
  • structure prediction
  • structure-function

Fingerprint

Dive into the research topics of 'The full spectrum of SLC22 OCT1 mutations illuminates the bridge between drug transporter biophysics and pharmacogenomics'. Together they form a unique fingerprint.

Cite this