The Fluorescence-Activating and Absorption-Shifting Tag (FAST) Enables Live-Cell Fluorescence Imaging of Methanococcus maripaludis

Eric Hernandez, Kyle C. Costa

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Live-cell fluorescence imaging of methanogenic archaea has been limited due to the strictly anoxic conditions required for growth and issues with autofluorescence associated with electron carriers in central metabolism. Here, we show that the fluorescence- activating and absorption-shifting tag (FAST) complexed with the fluorogenic ligand 4-hydroxy-3-methylbenzylidene-rhodanine (HMBR) overcomes these issues and displays robust fluorescence in Methanococcus maripaludis. We also describe a mechanism to visualize cells under anoxic conditions using a fluorescence microscope. Derivatives of FAST were successfully applied for protein abundance analysis, subcellular localization analysis, and determination of protein-protein interactions. FAST fusions to both formate dehydrogenase (Fdh) and F420-reducing hydrogenase (Fru) displayed increased fluorescence in cells grown on formate-containing medium, consistent with previous studies suggesting the increased abundance of these proteins in the absence of H2. Additionally, FAST fusions to both Fru and the ATPase associated with the archaellum (FlaI) showed a membrane localization in single cells observed using anoxic fluorescence microscopy. Finally, a split reporter translationally fused to the alpha and beta subunits of Fdh reconstituted a functionally fluorescent molecule in vivo via bimolecular fluorescence complementation. Together, these observations demonstrate the utility of FAST as a tool for studying members of the methanogenic archaea. IMPORTANCE Methanogenic archaea are important members of anaerobic microbial communities where they catalyze essential reactions in the degradation of organic matter. Developing additional tools for studying the cell biology of these organisms is essential to understanding them at a mechanistic level. Here, we show that FAST, in combination with the fluorogenic ligand HMBR, can be used to monitor protein dynamics in live cells of M. maripaludis. The application of FAST holds promise for future studies focused on the metabolism and physiology of methanogenic archaea.

Original languageEnglish (US)
JournalJournal of bacteriology
Volume204
Issue number7
DOIs
StatePublished - Jul 2022

Bibliographical note

Funding Information:
We thank Thomas Hanson for suggesting FAST as a potential reporter system and providing HMBR for preliminary experiments. This work was sponsored by a Young Investigator Program award from the Army Research Office, grant number W911NF-19-1-0024.

Publisher Copyright:
© 2022 American Society for Microbiology. All Rights Reserved.

Keywords

  • Archaea
  • FAST
  • fluorescence microscopy

PubMed: MeSH publication types

  • Journal Article
  • Research Support, U.S. Gov't, Non-P.H.S.

Fingerprint

Dive into the research topics of 'The Fluorescence-Activating and Absorption-Shifting Tag (FAST) Enables Live-Cell Fluorescence Imaging of Methanococcus maripaludis'. Together they form a unique fingerprint.

Cite this