The Feasibility of Using the “Artery Sign” for Pre-Procedural Planning in Navigational Bronchoscopy for Parenchymal Pulmonary Lesion Sampling

Elliot Ho, Roy Joseph Cho, Joseph C. Keenan, Septimiu Murgu

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Background: Electromagnetic navigation bronchoscopy (ENB) and robotic-assisted bronchoscopy (RAB) systems are used for pulmonary lesion sampling, and utilize a pre-procedural CT scan where an airway, or “bronchus sign”, is used to map a pathway to the target lesion. However, up to 40% of pre-procedural CT’s lack a “bronchus sign” partially due to surrounding emphysema or limitation in CT resolution. Recognizing that the branches of the pulmonary artery, lymphatics, and airways are often present together as the bronchovascular bundle, we postulate that a branch of the pulmonary artery (“artery sign”) could be used for pathway mapping during navigation bronchoscopy when a “bronchus sign” is absent. Herein we describe the navigation success and safety of using the “artery sign” to create a pathway for pulmonary lesion sampling. Methods: We reviewed data on consecutive cases in which the “artery sign” was used for pre-procedural planning for conventional ENB (superDimension™, Medtronic) and RAB (Monarch™, Johnson & Johnson). Patients who underwent these procedures from July 2020 until July 2021 at the University of Minnesota Medical Center and from June 2018 until December 2019 at the University of Chicago Medical Center were included in this analysis (IRB #19-0011 for the University of Chicago and IRB #00013135 for the University of Minnesota). The primary outcome was navigation success, defined as successfully maneuvering the bronchoscope to the target lesion based on feedback from the navigation system. Secondary outcomes included navigation success based on radial EBUS imaging, pneumothorax, and bleeding rates. Results: A total of 30 patients were enrolled in this analysis. The median diameter of the lesions was 17 mm. The median distance of the lesion from the pleura was 5 mm. Eleven lesions were solid, 15 were pure ground glass, and 4 were mixed. All cases were planned successfully using the “artery sign” on either the superDimension™ ENB (n = 15) or the Monarch™ RAB (n = 15). Navigation to the target was successful for 29 lesions (96.7%) based on feedback from the navigation system (virtual target). Radial EBUS image was acquired in 27 cases (90%) [eccentric view in 13 (43.33%) and concentric view in 14 patients (46.66%)], while in 3 cases (10%) no r-EBUS view was obtained. Pneumothorax occurred in one case (3%). Significant airway bleeding was reported in one case (3%). Conclusions: We describe the concept of using the “artery sign” as an alternative for planning EMN and RAB procedures when “bronchus sign” is absent. The navigation success based on virtual target or r-EBUS imaging is high and safety of sampling of such lesions compares favorably with prior reports. Prospective studies are needed to assess the impact of the “artery sign” on diagnostic yield.

Original languageEnglish (US)
Article number3059
JournalDiagnostics
Volume12
Issue number12
DOIs
StatePublished - Dec 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors.

Keywords

  • artery sign
  • bronchus sign
  • lung cancer
  • navigational bronchoscopy
  • pulmonary nodules
  • pulmonary vessel
  • robotic bronchoscopy
  • vessel sign

Fingerprint

Dive into the research topics of 'The Feasibility of Using the “Artery Sign” for Pre-Procedural Planning in Navigational Bronchoscopy for Parenchymal Pulmonary Lesion Sampling'. Together they form a unique fingerprint.

Cite this