La théorie Föppl-von Kármán des plaques comme Γ-limite de l'élasticité non linéaire

Translated title of the contribution: The Föppl-von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity

Gero Friesecke, Richard D. James, Stefan Müller

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

We show that the Föppl-von Kármán theory arises as a low energy Γ-limit of three-dimensional nonlinear elasticity. A key ingredient in the proof is a generalization to higher derivatives of our rigidity result [5] that for maps v : (0, 1)3 → ℝ3, the L2 distance of ∇v from a single rotation is bounded by a multiple of the L2 distance from the set SO(3) of all rotations.

Translated title of the contributionThe Föppl-von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity
Original languageFrench
Pages (from-to)201-206
Number of pages6
JournalComptes Rendus Mathematique
Volume335
Issue number2
DOIs
StatePublished - Jul 15 2002

Fingerprint Dive into the research topics of 'The Föppl-von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity'. Together they form a unique fingerprint.

Cite this