Abstract
In this study, Co-W thin films deposited by DC magnetron sputtering were demonstrated to be perpendicular magnetic anisotropic with large magnetocrystalline anisotropy energy (MAE). Thermodynamic calculations based on Miedema's semi-empirical model have been used to estimate the phase in this binary alloy system. Based on the thermodynamic calculations results, a series of Co-W thin films were deposited on amorphous Ta underlayer with different tungsten concentrations. According to the X-ray diffraction results, the crystal structure of Co-W thin films is consistent well with that of thermodynamic calculations. Large MAE of Co-W thin films can be obtained with Ku over 2.1 × 105 J/m3 after vacuum annealing. The perpendicular coercivity (Hc) of Co-W thin film reaches 9.1 × 104 A/m. Therefore, the Co-W thin film is considered as a potential choice of high-density magnetic recording media materials.
Original language | English (US) |
---|---|
Article number | 127156 |
Journal | AIP Advances |
Volume | 4 |
Issue number | 12 |
DOIs | |
State | Published - Dec 1 2014 |
Bibliographical note
Publisher Copyright:© 2014 Author(s).