TY - JOUR
T1 - The effects of coffee on enzymes involved in metabolism of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in rats
AU - Turesky, Robert J.
AU - Richoz, Janique
AU - Constable, Anne
AU - Curtis, Kellie D.
AU - Dingley, Karen H.
AU - Turteltaub, Kenneth W.
PY - 2003/6/15
Y1 - 2003/6/15
N2 - The effects of coffee on the metabolism and genotoxicity of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were investigated. Coffee diminished the bacterial mutagenicity of PhIP in the Ames reversion assay through inhibition of cytochrome P450 1A2 (CYP1A2), a key enzyme involved in the metabolic activation of PhIP. When given as part of the diet (0, 1 or 5% w/w) to male Fischer-344 rats for 2 weeks, coffee affected the expression of hepatic enzymes involved in PhIP metabolism. Coffee increased the expression of CYP1A2 by 16-fold in the 5% coffee-treated group, and approximately half of this inductive effect was attributed to caffeine. Coffee also increased the expression of enzymes involved in the detoxication of PhIP. A 2-fold increase in expression of glutathione S-transferase alpha was observed, UDP-glucuronosyl transferase (UGTs) activities of p-nitrophenol increased 2-fold, while N2-and N3-glucuronidation of the genotoxic metabolite 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP) increased by 1.3-fold in the 5% coffee-treated over the control group. The amount of PhIP (0.75 mg/kg, 24 h) eliminated in urine as the N2-and N3-glucuronide conjugates of HONH-PhIP increased by 1.8- and 2.5-fold, respectively, in the 5% coffee-treated group over control rats, suggesting either increased rates of N-oxidation of PhIP or N-glucuronidation of HONH-PhIP. Despite the strong induction of CYP1A2, there was no increase in PhIP-DNA adduct formation in colon and pancreas while liver adducts decreased by 50% over control animals. These data suggest that the effect of coffee on inhibition of PhIP N-oxidation and ensuing DNA damage is more important in vivo than its effect on induction of PhIP N-hydroxylation.
AB - The effects of coffee on the metabolism and genotoxicity of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were investigated. Coffee diminished the bacterial mutagenicity of PhIP in the Ames reversion assay through inhibition of cytochrome P450 1A2 (CYP1A2), a key enzyme involved in the metabolic activation of PhIP. When given as part of the diet (0, 1 or 5% w/w) to male Fischer-344 rats for 2 weeks, coffee affected the expression of hepatic enzymes involved in PhIP metabolism. Coffee increased the expression of CYP1A2 by 16-fold in the 5% coffee-treated group, and approximately half of this inductive effect was attributed to caffeine. Coffee also increased the expression of enzymes involved in the detoxication of PhIP. A 2-fold increase in expression of glutathione S-transferase alpha was observed, UDP-glucuronosyl transferase (UGTs) activities of p-nitrophenol increased 2-fold, while N2-and N3-glucuronidation of the genotoxic metabolite 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP) increased by 1.3-fold in the 5% coffee-treated over the control group. The amount of PhIP (0.75 mg/kg, 24 h) eliminated in urine as the N2-and N3-glucuronide conjugates of HONH-PhIP increased by 1.8- and 2.5-fold, respectively, in the 5% coffee-treated group over control rats, suggesting either increased rates of N-oxidation of PhIP or N-glucuronidation of HONH-PhIP. Despite the strong induction of CYP1A2, there was no increase in PhIP-DNA adduct formation in colon and pancreas while liver adducts decreased by 50% over control animals. These data suggest that the effect of coffee on inhibition of PhIP N-oxidation and ensuing DNA damage is more important in vivo than its effect on induction of PhIP N-hydroxylation.
KW - Caffeine
KW - Chemoprotection
KW - Coffee
KW - Heterocyclic aromatic amines
KW - Metabolism
UR - http://www.scopus.com/inward/record.url?scp=0037652335&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037652335&partnerID=8YFLogxK
U2 - 10.1016/S0009-2797(03)00022-X
DO - 10.1016/S0009-2797(03)00022-X
M3 - Article
C2 - 12732453
AN - SCOPUS:0037652335
VL - 145
SP - 251
EP - 265
JO - Chemico-Biological Interactions
JF - Chemico-Biological Interactions
SN - 0009-2797
IS - 3
ER -